Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\left(\sqrt{4x-20}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=4x-20
Tātaihia te \sqrt{4x-20} mā te pū o 2, kia riro ko 4x-20.
x^{2}-4x=-20
Tangohia te 4x mai i ngā taha e rua.
x^{2}-4x+20=0
Me tāpiri te 20 ki ngā taha e rua.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 20}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 20}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-80}}{2}
Whakareatia -4 ki te 20.
x=\frac{-\left(-4\right)±\sqrt{-64}}{2}
Tāpiri 16 ki te -80.
x=\frac{-\left(-4\right)±8i}{2}
Tuhia te pūtakerua o te -64.
x=\frac{4±8i}{2}
Ko te tauaro o -4 ko 4.
x=\frac{4+8i}{2}
Nā, me whakaoti te whārite x=\frac{4±8i}{2} ina he tāpiri te ±. Tāpiri 4 ki te 8i.
x=2+4i
Whakawehe 4+8i ki te 2.
x=\frac{4-8i}{2}
Nā, me whakaoti te whārite x=\frac{4±8i}{2} ina he tango te ±. Tango 8i mai i 4.
x=2-4i
Whakawehe 4-8i ki te 2.
x=2+4i x=2-4i
Kua oti te whārite te whakatau.
2+4i=\sqrt{4\left(2+4i\right)-20}
Whakakapia te 2+4i mō te x i te whārite x=\sqrt{4x-20}.
2+4i=2+4i
Whakarūnātia. Ko te uara x=2+4i kua ngata te whārite.
2-4i=\sqrt{4\left(2-4i\right)-20}
Whakakapia te 2-4i mō te x i te whārite x=\sqrt{4x-20}.
2-4i=2-4i
Whakarūnātia. Ko te uara x=2-4i kua ngata te whārite.
x=2+4i x=2-4i
Rārangihia ngā rongoā katoa o x=\sqrt{4x-20}.