Whakaoti mō x (complex solution)
x=1+i
x=1-i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{x-2}{x-1}=0
Tangohia te \frac{x-2}{x-1} mai i ngā taha e rua.
\frac{x\left(x-1\right)}{x-1}-\frac{x-2}{x-1}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x-1}{x-1}.
\frac{x\left(x-1\right)-\left(x-2\right)}{x-1}=0
Tā te mea he rite te tauraro o \frac{x\left(x-1\right)}{x-1} me \frac{x-2}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-x-x+2}{x-1}=0
Mahia ngā whakarea i roto o x\left(x-1\right)-\left(x-2\right).
\frac{x^{2}-2x+2}{x-1}=0
Whakakotahitia ngā kupu rite i x^{2}-x-x+2.
x^{2}-2x+2=0
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-8}}{2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-2\right)±\sqrt{-4}}{2}
Tāpiri 4 ki te -8.
x=\frac{-\left(-2\right)±2i}{2}
Tuhia te pūtakerua o te -4.
x=\frac{2±2i}{2}
Ko te tauaro o -2 ko 2.
x=\frac{2+2i}{2}
Nā, me whakaoti te whārite x=\frac{2±2i}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2i.
x=1+i
Whakawehe 2+2i ki te 2.
x=\frac{2-2i}{2}
Nā, me whakaoti te whārite x=\frac{2±2i}{2} ina he tango te ±. Tango 2i mai i 2.
x=1-i
Whakawehe 2-2i ki te 2.
x=1+i x=1-i
Kua oti te whārite te whakatau.
x-\frac{x-2}{x-1}=0
Tangohia te \frac{x-2}{x-1} mai i ngā taha e rua.
\frac{x\left(x-1\right)}{x-1}-\frac{x-2}{x-1}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x-1}{x-1}.
\frac{x\left(x-1\right)-\left(x-2\right)}{x-1}=0
Tā te mea he rite te tauraro o \frac{x\left(x-1\right)}{x-1} me \frac{x-2}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-x-x+2}{x-1}=0
Mahia ngā whakarea i roto o x\left(x-1\right)-\left(x-2\right).
\frac{x^{2}-2x+2}{x-1}=0
Whakakotahitia ngā kupu rite i x^{2}-x-x+2.
x^{2}-2x+2=0
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
x^{2}-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-2x+1=-2+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=-1
Tāpiri -2 ki te 1.
\left(x-1\right)^{2}=-1
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=i x-1=-i
Whakarūnātia.
x=1+i x=1-i
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}