Whakaoti mō x (complex solution)
x=-\frac{\sqrt{3}i}{2}\approx -0-0.866025404i
x=\frac{\sqrt{3}i}{2}\approx 0.866025404i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{2}{3}x\times 2x+\frac{2}{3}x\times 9-5x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3}x ki te 2x+9.
x=\frac{2}{3}x^{2}\times 2+\frac{2}{3}x\times 9-5x+1
Whakareatia te x ki te x, ka x^{2}.
x=\frac{2\times 2}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Tuhia te \frac{2}{3}\times 2 hei hautanga kotahi.
x=\frac{4}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Whakareatia te 2 ki te 2, ka 4.
x=\frac{4}{3}x^{2}+\frac{2\times 9}{3}x-5x+1
Tuhia te \frac{2}{3}\times 9 hei hautanga kotahi.
x=\frac{4}{3}x^{2}+\frac{18}{3}x-5x+1
Whakareatia te 2 ki te 9, ka 18.
x=\frac{4}{3}x^{2}+6x-5x+1
Whakawehea te 18 ki te 3, kia riro ko 6.
x=\frac{4}{3}x^{2}+x+1
Pahekotia te 6x me -5x, ka x.
x-\frac{4}{3}x^{2}=x+1
Tangohia te \frac{4}{3}x^{2} mai i ngā taha e rua.
x-\frac{4}{3}x^{2}-x=1
Tangohia te x mai i ngā taha e rua.
-\frac{4}{3}x^{2}=1
Pahekotia te x me -x, ka 0.
x^{2}=1\left(-\frac{3}{4}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{4}, te tau utu o -\frac{4}{3}.
x^{2}=-\frac{3}{4}
Whakareatia te 1 ki te -\frac{3}{4}, ka -\frac{3}{4}.
x=\frac{\sqrt{3}i}{2} x=-\frac{\sqrt{3}i}{2}
Kua oti te whārite te whakatau.
x=\frac{2}{3}x\times 2x+\frac{2}{3}x\times 9-5x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3}x ki te 2x+9.
x=\frac{2}{3}x^{2}\times 2+\frac{2}{3}x\times 9-5x+1
Whakareatia te x ki te x, ka x^{2}.
x=\frac{2\times 2}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Tuhia te \frac{2}{3}\times 2 hei hautanga kotahi.
x=\frac{4}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
Whakareatia te 2 ki te 2, ka 4.
x=\frac{4}{3}x^{2}+\frac{2\times 9}{3}x-5x+1
Tuhia te \frac{2}{3}\times 9 hei hautanga kotahi.
x=\frac{4}{3}x^{2}+\frac{18}{3}x-5x+1
Whakareatia te 2 ki te 9, ka 18.
x=\frac{4}{3}x^{2}+6x-5x+1
Whakawehea te 18 ki te 3, kia riro ko 6.
x=\frac{4}{3}x^{2}+x+1
Pahekotia te 6x me -5x, ka x.
x-\frac{4}{3}x^{2}=x+1
Tangohia te \frac{4}{3}x^{2} mai i ngā taha e rua.
x-\frac{4}{3}x^{2}-x=1
Tangohia te x mai i ngā taha e rua.
-\frac{4}{3}x^{2}=1
Pahekotia te x me -x, ka 0.
-\frac{4}{3}x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{3}\right)\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{4}{3} mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{4}{3}\right)\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
Pūrua 0.
x=\frac{0±\sqrt{\frac{16}{3}\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
Whakareatia -4 ki te -\frac{4}{3}.
x=\frac{0±\sqrt{-\frac{16}{3}}}{2\left(-\frac{4}{3}\right)}
Whakareatia \frac{16}{3} ki te -1.
x=\frac{0±\frac{4\sqrt{3}i}{3}}{2\left(-\frac{4}{3}\right)}
Tuhia te pūtakerua o te -\frac{16}{3}.
x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}}
Whakareatia 2 ki te -\frac{4}{3}.
x=-\frac{\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}} ina he tāpiri te ±.
x=\frac{\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}} ina he tango te ±.
x=-\frac{\sqrt{3}i}{2} x=\frac{\sqrt{3}i}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}