Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

xy-z^{2}+3+y_{4}\times 3=4\times 8\times 16
Whakareatia te z ki te z, ka z^{2}.
xy-z^{2}+3+y_{4}\times 3=32\times 16
Whakareatia te 4 ki te 8, ka 32.
xy-z^{2}+3+y_{4}\times 3=512
Whakareatia te 32 ki te 16, ka 512.
xy+3+y_{4}\times 3=512+z^{2}
Me tāpiri te z^{2} ki ngā taha e rua.
xy+y_{4}\times 3=512+z^{2}-3
Tangohia te 3 mai i ngā taha e rua.
xy+y_{4}\times 3=509+z^{2}
Tangohia te 3 i te 512, ka 509.
xy=509+z^{2}-y_{4}\times 3
Tangohia te y_{4}\times 3 mai i ngā taha e rua.
xy=509+z^{2}-3y_{4}
Whakareatia te -1 ki te 3, ka -3.
yx=509+z^{2}-3y_{4}
He hanga arowhānui tō te whārite.
\frac{yx}{y}=\frac{509+z^{2}-3y_{4}}{y}
Whakawehea ngā taha e rua ki te y.
x=\frac{509+z^{2}-3y_{4}}{y}
Mā te whakawehe ki te y ka wetekia te whakareanga ki te y.
xy-z^{2}+3+y_{4}\times 3=4\times 8\times 16
Whakareatia te z ki te z, ka z^{2}.
xy-z^{2}+3+y_{4}\times 3=32\times 16
Whakareatia te 4 ki te 8, ka 32.
xy-z^{2}+3+y_{4}\times 3=512
Whakareatia te 32 ki te 16, ka 512.
xy+3+y_{4}\times 3=512+z^{2}
Me tāpiri te z^{2} ki ngā taha e rua.
xy+y_{4}\times 3=512+z^{2}-3
Tangohia te 3 mai i ngā taha e rua.
xy+y_{4}\times 3=509+z^{2}
Tangohia te 3 i te 512, ka 509.
xy=509+z^{2}-y_{4}\times 3
Tangohia te y_{4}\times 3 mai i ngā taha e rua.
xy=509+z^{2}-3y_{4}
Whakareatia te -1 ki te 3, ka -3.
\frac{xy}{x}=\frac{509+z^{2}-3y_{4}}{x}
Whakawehea ngā taha e rua ki te x.
y=\frac{509+z^{2}-3y_{4}}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.