( x \cdot 621 \% \cdot 6 ) + x = 18
Whakaoti mō x
x=\frac{900}{1913}\approx 0.470465238
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times \frac{621\times 6}{100}+x=18
Tuhia te \frac{621}{100}\times 6 hei hautanga kotahi.
x\times \frac{3726}{100}+x=18
Whakareatia te 621 ki te 6, ka 3726.
x\times \frac{1863}{50}+x=18
Whakahekea te hautanga \frac{3726}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1913}{50}x=18
Pahekotia te x\times \frac{1863}{50} me x, ka \frac{1913}{50}x.
x=18\times \frac{50}{1913}
Me whakarea ngā taha e rua ki te \frac{50}{1913}, te tau utu o \frac{1913}{50}.
x=\frac{18\times 50}{1913}
Tuhia te 18\times \frac{50}{1913} hei hautanga kotahi.
x=\frac{900}{1913}
Whakareatia te 18 ki te 50, ka 900.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}