Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
x^{6}-2x^{3}y^{3}+9x^{2}y^{2}-6xy^{4}+y^{6}+6yx^{4}-\left(x^{3}+y^{3}+3xy\right)^{2}+4xy^{3}\left(x^{2}+3y\right)
Pūrua x^{3}-y^{3}+3xy.
x^{6}-2x^{3}y^{3}+9x^{2}y^{2}-6xy^{4}+y^{6}+6yx^{4}-\left(x^{6}+2x^{3}y^{3}+9x^{2}y^{2}+6xy^{4}+y^{6}+6yx^{4}\right)+4xy^{3}\left(x^{2}+3y\right)
Pūrua x^{3}+y^{3}+3xy.
x^{6}-2x^{3}y^{3}+9x^{2}y^{2}-6xy^{4}+y^{6}+6yx^{4}-x^{6}-2x^{3}y^{3}-9x^{2}y^{2}-6xy^{4}-y^{6}-6yx^{4}+4xy^{3}\left(x^{2}+3y\right)
Hei kimi i te tauaro o x^{6}+2x^{3}y^{3}+9x^{2}y^{2}+6xy^{4}+y^{6}+6yx^{4}, kimihia te tauaro o ia taurangi.
-2x^{3}y^{3}+9x^{2}y^{2}-6xy^{4}+y^{6}+6yx^{4}-2x^{3}y^{3}-9x^{2}y^{2}-6xy^{4}-y^{6}-6yx^{4}+4xy^{3}\left(x^{2}+3y\right)
Pahekotia te x^{6} me -x^{6}, ka 0.
-4x^{3}y^{3}+9x^{2}y^{2}-6xy^{4}+y^{6}+6yx^{4}-9x^{2}y^{2}-6xy^{4}-y^{6}-6yx^{4}+4xy^{3}\left(x^{2}+3y\right)
Pahekotia te -2x^{3}y^{3} me -2x^{3}y^{3}, ka -4x^{3}y^{3}.
-4x^{3}y^{3}-6xy^{4}+y^{6}+6yx^{4}-6xy^{4}-y^{6}-6yx^{4}+4xy^{3}\left(x^{2}+3y\right)
Pahekotia te 9x^{2}y^{2} me -9x^{2}y^{2}, ka 0.
-4x^{3}y^{3}-12xy^{4}+y^{6}+6yx^{4}-y^{6}-6yx^{4}+4xy^{3}\left(x^{2}+3y\right)
Pahekotia te -6xy^{4} me -6xy^{4}, ka -12xy^{4}.
-4x^{3}y^{3}-12xy^{4}+6yx^{4}-6yx^{4}+4xy^{3}\left(x^{2}+3y\right)
Pahekotia te y^{6} me -y^{6}, ka 0.
-4x^{3}y^{3}-12xy^{4}+4xy^{3}\left(x^{2}+3y\right)
Pahekotia te 6yx^{4} me -6yx^{4}, ka 0.
-4x^{3}y^{3}-12xy^{4}+4y^{3}x^{3}+12xy^{4}
Whakamahia te āhuatanga tohatoha hei whakarea te 4xy^{3} ki te x^{2}+3y.
-12xy^{4}+12xy^{4}
Pahekotia te -4x^{3}y^{3} me 4y^{3}x^{3}, ka 0.
0
Pahekotia te -12xy^{4} me 12xy^{4}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}