Whakaoti mō x (complex solution)
x=-3\sqrt{3}i-3\approx -3-5.196152423i
x=6
x=-3+3\sqrt{3}i\approx -3+5.196152423i
Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}-1=43\times 5
Me whakarea ngā taha e rua ki te 5.
x^{3}-1=215
Whakareatia te 43 ki te 5, ka 215.
x^{3}-1-215=0
Tangohia te 215 mai i ngā taha e rua.
x^{3}-216=0
Tangohia te 215 i te -1, ka -216.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -216, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+6x+36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-216 ki te x-6, kia riro ko x^{2}+6x+36. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 6 mō te b, me te 36 mō te c i te ture pūrua.
x=\frac{-6±\sqrt{-108}}{2}
Mahia ngā tātaitai.
x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Whakaotia te whārite x^{2}+6x+36=0 ina he tōrunga te ±, ina he tōraro te ±.
x=6 x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Rārangitia ngā otinga katoa i kitea.
x^{3}-1=43\times 5
Me whakarea ngā taha e rua ki te 5.
x^{3}-1=215
Whakareatia te 43 ki te 5, ka 215.
x^{3}-1-215=0
Tangohia te 215 mai i ngā taha e rua.
x^{3}-216=0
Tangohia te 215 i te -1, ka -216.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -216, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+6x+36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-216 ki te x-6, kia riro ko x^{2}+6x+36. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 6 mō te b, me te 36 mō te c i te ture pūrua.
x=\frac{-6±\sqrt{-108}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=6
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}