Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-1=43\times 5
Me whakarea ngā taha e rua ki te 5.
x^{3}-1=215
Whakareatia te 43 ki te 5, ka 215.
x^{3}-1-215=0
Tangohia te 215 mai i ngā taha e rua.
x^{3}-216=0
Tangohia te 215 i te -1, ka -216.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -216, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+6x+36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-216 ki te x-6, kia riro ko x^{2}+6x+36. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 6 mō te b, me te 36 mō te c i te ture pūrua.
x=\frac{-6±\sqrt{-108}}{2}
Mahia ngā tātaitai.
x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Whakaotia te whārite x^{2}+6x+36=0 ina he tōrunga te ±, ina he tōraro te ±.
x=6 x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Rārangitia ngā otinga katoa i kitea.
x^{3}-1=43\times 5
Me whakarea ngā taha e rua ki te 5.
x^{3}-1=215
Whakareatia te 43 ki te 5, ka 215.
x^{3}-1-215=0
Tangohia te 215 mai i ngā taha e rua.
x^{3}-216=0
Tangohia te 215 i te -1, ka -216.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -216, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+6x+36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-216 ki te x-6, kia riro ko x^{2}+6x+36. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 6 mō te b, me te 36 mō te c i te ture pūrua.
x=\frac{-6±\sqrt{-108}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=6
Rārangitia ngā otinga katoa i kitea.