Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-y^{2}-\left(x^{2}-y^{2}\right)+3x^{2}
Whakaarohia te \left(x+y\right)\left(x-y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-x^{2}+y^{2}+3x^{2}
Hei kimi i te tauaro o x^{2}-y^{2}, kimihia te tauaro o ia taurangi.
-y^{2}+y^{2}+3x^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
0+3x^{2}
Pahekotia te -y^{2} me y^{2}, ka 0.
3x^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-y^{2}-\left(x^{2}-y^{2}\right)+3x^{2}
Whakaarohia te \left(x+y\right)\left(x-y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-x^{2}+y^{2}+3x^{2}
Hei kimi i te tauaro o x^{2}-y^{2}, kimihia te tauaro o ia taurangi.
-y^{2}+y^{2}+3x^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
0+3x^{2}
Pahekotia te -y^{2} me y^{2}, ka 0.
3x^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.