Whakaoti mō x
x=3
x=-3
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( x ^ { 2 } - 8 ) ^ { 2 } - 2 ( x ^ { 2 } - 8 ) + 1 = 0
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{2}\right)^{2}-16x^{2}+64-2\left(x^{2}-8\right)+1=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x^{2}-8\right)^{2}.
x^{4}-16x^{2}+64-2\left(x^{2}-8\right)+1=0
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
x^{4}-16x^{2}+64-2x^{2}+16+1=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x^{2}-8.
x^{4}-18x^{2}+64+16+1=0
Pahekotia te -16x^{2} me -2x^{2}, ka -18x^{2}.
x^{4}-18x^{2}+80+1=0
Tāpirihia te 64 ki te 16, ka 80.
x^{4}-18x^{2}+81=0
Tāpirihia te 80 ki te 1, ka 81.
t^{2}-18t+81=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -18 mō te b, me te 81 mō te c i te ture pūrua.
t=\frac{18±0}{2}
Mahia ngā tātaitai.
t=9
He ōrite ngā whakatau.
x=-3 x=3
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}