Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{2}\right)^{2}-16x^{2}+64-2\left(x^{2}-8\right)+1=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x^{2}-8\right)^{2}.
x^{4}-16x^{2}+64-2\left(x^{2}-8\right)+1=0
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
x^{4}-16x^{2}+64-2x^{2}+16+1=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x^{2}-8.
x^{4}-18x^{2}+64+16+1=0
Pahekotia te -16x^{2} me -2x^{2}, ka -18x^{2}.
x^{4}-18x^{2}+80+1=0
Tāpirihia te 64 ki te 16, ka 80.
x^{4}-18x^{2}+81=0
Tāpirihia te 80 ki te 1, ka 81.
t^{2}-18t+81=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -18 mō te b, me te 81 mō te c i te ture pūrua.
t=\frac{18±0}{2}
Mahia ngā tātaitai.
t=9
He ōrite ngā whakatau.
x=-3 x=3
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.