Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-3x+5-7x-4
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-10x+5-4
Pahekotia te -3x me -7x, ka -10x.
3x^{2}-10x+1
Tangohia te 4 i te 5, ka 1.
factor(3x^{2}-3x+5-7x-4)
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
factor(3x^{2}-10x+5-4)
Pahekotia te -3x me -7x, ka -10x.
factor(3x^{2}-10x+1)
Tangohia te 4 i te 5, ka 1.
3x^{2}-10x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3}}{2\times 3}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-12}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-10\right)±\sqrt{88}}{2\times 3}
Tāpiri 100 ki te -12.
x=\frac{-\left(-10\right)±2\sqrt{22}}{2\times 3}
Tuhia te pūtakerua o te 88.
x=\frac{10±2\sqrt{22}}{2\times 3}
Ko te tauaro o -10 ko 10.
x=\frac{10±2\sqrt{22}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{22}+10}{6}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{22}}{6} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{22}.
x=\frac{\sqrt{22}+5}{3}
Whakawehe 10+2\sqrt{22} ki te 6.
x=\frac{10-2\sqrt{22}}{6}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{22}}{6} ina he tango te ±. Tango 2\sqrt{22} mai i 10.
x=\frac{5-\sqrt{22}}{3}
Whakawehe 10-2\sqrt{22} ki te 6.
3x^{2}-10x+1=3\left(x-\frac{\sqrt{22}+5}{3}\right)\left(x-\frac{5-\sqrt{22}}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5+\sqrt{22}}{3} mō te x_{1} me te \frac{5-\sqrt{22}}{3} mō te x_{2}.