Aromātai
3x^{2}-8x+7
Whakaroha
3x^{2}-8x+7
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( x ^ { 2 } - 3 ) ( x + 1 ) - ( x ^ { 2 } + 5 ) ( x - 2 ) =
Tohaina
Kua tāruatia ki te papatopenga
x^{3}+x^{2}-3x-3-\left(x^{2}+5\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-3 ki te x+1.
x^{3}+x^{2}-3x-3-\left(x^{3}-2x^{2}+5x-10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+5 ki te x-2.
x^{3}+x^{2}-3x-3-x^{3}+2x^{2}-5x+10
Hei kimi i te tauaro o x^{3}-2x^{2}+5x-10, kimihia te tauaro o ia taurangi.
x^{2}-3x-3+2x^{2}-5x+10
Pahekotia te x^{3} me -x^{3}, ka 0.
3x^{2}-3x-3-5x+10
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-8x-3+10
Pahekotia te -3x me -5x, ka -8x.
3x^{2}-8x+7
Tāpirihia te -3 ki te 10, ka 7.
x^{3}+x^{2}-3x-3-\left(x^{2}+5\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-3 ki te x+1.
x^{3}+x^{2}-3x-3-\left(x^{3}-2x^{2}+5x-10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+5 ki te x-2.
x^{3}+x^{2}-3x-3-x^{3}+2x^{2}-5x+10
Hei kimi i te tauaro o x^{3}-2x^{2}+5x-10, kimihia te tauaro o ia taurangi.
x^{2}-3x-3+2x^{2}-5x+10
Pahekotia te x^{3} me -x^{3}, ka 0.
3x^{2}-3x-3-5x+10
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-8x-3+10
Pahekotia te -3x me -5x, ka -8x.
3x^{2}-8x+7
Tāpirihia te -3 ki te 10, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}