Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}+6 ki te 7-x^{2} ka whakakotahi i ngā kupu rite.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Tangohia te 36 i te 42, ka 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Tangohia te x^{4} mai i ngā taha e rua.
x^{2}-2x^{4}+6=12x^{2}
Pahekotia te -x^{4} me -x^{4}, ka -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
-11x^{2}-2x^{4}+6=0
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-2t^{2}-11t+6=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -2 mō te a, te -11 mō te b, me te 6 mō te c i te ture pūrua.
t=\frac{11±13}{-4}
Mahia ngā tātaitai.
t=-6 t=\frac{1}{2}
Whakaotia te whārite t=\frac{11±13}{-4} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt{6}i x=\sqrt{6}i x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}+6 ki te 7-x^{2} ka whakakotahi i ngā kupu rite.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Tangohia te 36 i te 42, ka 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Tangohia te x^{4} mai i ngā taha e rua.
x^{2}-2x^{4}+6=12x^{2}
Pahekotia te -x^{4} me -x^{4}, ka -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
-11x^{2}-2x^{4}+6=0
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-2t^{2}-11t+6=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -2 mō te a, te -11 mō te b, me te 6 mō te c i te ture pūrua.
t=\frac{11±13}{-4}
Mahia ngā tātaitai.
t=-6 t=\frac{1}{2}
Whakaotia te whārite t=\frac{11±13}{-4} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.