Whakaoti mō x (complex solution)
x=\sqrt{6}i\approx 2.449489743i
x=-\sqrt{6}i\approx -0-2.449489743i
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
x=\frac{\sqrt{2}}{2}\approx 0.707106781
Whakaoti mō x
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
x=\frac{\sqrt{2}}{2}\approx 0.707106781
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}+6 ki te 7-x^{2} ka whakakotahi i ngā kupu rite.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Tangohia te 36 i te 42, ka 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Tangohia te x^{4} mai i ngā taha e rua.
x^{2}-2x^{4}+6=12x^{2}
Pahekotia te -x^{4} me -x^{4}, ka -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
-11x^{2}-2x^{4}+6=0
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-2t^{2}-11t+6=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -2 mō te a, te -11 mō te b, me te 6 mō te c i te ture pūrua.
t=\frac{11±13}{-4}
Mahia ngā tātaitai.
t=-6 t=\frac{1}{2}
Whakaotia te whārite t=\frac{11±13}{-4} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt{6}i x=\sqrt{6}i x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}+6 ki te 7-x^{2} ka whakakotahi i ngā kupu rite.
x^{2}-x^{4}+6=x^{4}+12x^{2}
Tangohia te 36 i te 42, ka 6.
x^{2}-x^{4}+6-x^{4}=12x^{2}
Tangohia te x^{4} mai i ngā taha e rua.
x^{2}-2x^{4}+6=12x^{2}
Pahekotia te -x^{4} me -x^{4}, ka -2x^{4}.
x^{2}-2x^{4}+6-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
-11x^{2}-2x^{4}+6=0
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-2t^{2}-11t+6=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -2 mō te a, te -11 mō te b, me te 6 mō te c i te ture pūrua.
t=\frac{11±13}{-4}
Mahia ngā tātaitai.
t=-6 t=\frac{1}{2}
Whakaotia te whārite t=\frac{11±13}{-4} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}