Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{2}+\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
Whakangāwaritia te tauraro o \frac{2x}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\left(x^{2}+\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
Ko te pūrua o \sqrt{3} ko 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
Tā te mea he rite te tauraro o \frac{2x\sqrt{3}}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)
Whakangāwaritia te tauraro o \frac{2x}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)
Ko te pūrua o \sqrt{3} ko 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)
Tā te mea he rite te tauraro o \frac{2x\sqrt{3}}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
Whakareatia te x^{2}+\frac{2x\sqrt{3}+1}{3} ki te x^{2}+\frac{2x\sqrt{3}+1}{3}, ka \left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}.
\left(\frac{3x^{2}}{3}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2} ki te \frac{3}{3}.
\left(\frac{3x^{2}+2x\sqrt{3}+1}{3}\right)^{2}
Tā te mea he rite te tauraro o \frac{3x^{2}}{3} me \frac{2x\sqrt{3}+1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(3x^{2}+2x\sqrt{3}+1\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{3x^{2}+2x\sqrt{3}+1}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\left(\sqrt{3}\right)^{2}x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
Pūrua 3x^{2}+2x\sqrt{3}+1.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\times 3x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{9x^{4}+12\sqrt{3}x^{3}+12x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{3^{2}}
Pahekotia te 12x^{2} me 6x^{2}, ka 18x^{2}.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.