Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+14x+49=2x^{2}+8x+54
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+7\right)^{2}.
x^{2}+14x+49-2x^{2}=8x+54
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}+14x+49=8x+54
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}+14x+49-8x=54
Tangohia te 8x mai i ngā taha e rua.
-x^{2}+6x+49=54
Pahekotia te 14x me -8x, ka 6x.
-x^{2}+6x+49-54=0
Tangohia te 54 mai i ngā taha e rua.
-x^{2}+6x-5=0
Tangohia te 54 i te 49, ka -5.
a+b=6 ab=-\left(-5\right)=5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=5 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+5x\right)+\left(x-5\right)
Tuhia anō te -x^{2}+6x-5 hei \left(-x^{2}+5x\right)+\left(x-5\right).
-x\left(x-5\right)+x-5
Whakatauwehea atu -x i te -x^{2}+5x.
\left(x-5\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=1
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x+1=0.
x^{2}+14x+49=2x^{2}+8x+54
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+7\right)^{2}.
x^{2}+14x+49-2x^{2}=8x+54
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}+14x+49=8x+54
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}+14x+49-8x=54
Tangohia te 8x mai i ngā taha e rua.
-x^{2}+6x+49=54
Pahekotia te 14x me -8x, ka 6x.
-x^{2}+6x+49-54=0
Tangohia te 54 mai i ngā taha e rua.
-x^{2}+6x-5=0
Tangohia te 54 i te 49, ka -5.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 6 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+4\left(-5\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-6±\sqrt{36-20}}{2\left(-1\right)}
Whakareatia 4 ki te -5.
x=\frac{-6±\sqrt{16}}{2\left(-1\right)}
Tāpiri 36 ki te -20.
x=\frac{-6±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 16.
x=\frac{-6±4}{-2}
Whakareatia 2 ki te -1.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-6±4}{-2} ina he tāpiri te ±. Tāpiri -6 ki te 4.
x=1
Whakawehe -2 ki te -2.
x=-\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-6±4}{-2} ina he tango te ±. Tango 4 mai i -6.
x=5
Whakawehe -10 ki te -2.
x=1 x=5
Kua oti te whārite te whakatau.
x^{2}+14x+49=2x^{2}+8x+54
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+7\right)^{2}.
x^{2}+14x+49-2x^{2}=8x+54
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}+14x+49=8x+54
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}+14x+49-8x=54
Tangohia te 8x mai i ngā taha e rua.
-x^{2}+6x+49=54
Pahekotia te 14x me -8x, ka 6x.
-x^{2}+6x=54-49
Tangohia te 49 mai i ngā taha e rua.
-x^{2}+6x=5
Tangohia te 49 i te 54, ka 5.
\frac{-x^{2}+6x}{-1}=\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{6}{-1}x=\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-6x=\frac{5}{-1}
Whakawehe 6 ki te -1.
x^{2}-6x=-5
Whakawehe 5 ki te -1.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-5+9
Pūrua -3.
x^{2}-6x+9=4
Tāpiri -5 ki te 9.
\left(x-3\right)^{2}=4
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2 x-3=-2
Whakarūnātia.
x=5 x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.