Whakaoti mō x
x=2\sqrt{6}-4\approx 0.898979486
x=-2\sqrt{6}-4\approx -8.898979486
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x+6+2=\left(x+6\right)x
Pahekotia te x me -3x, ka -2x.
-2x+8=\left(x+6\right)x
Tāpirihia te 6 ki te 2, ka 8.
-2x+8=x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te x+6 ki te x.
-2x+8-x^{2}=6x
Tangohia te x^{2} mai i ngā taha e rua.
-2x+8-x^{2}-6x=0
Tangohia te 6x mai i ngā taha e rua.
-8x+8-x^{2}=0
Pahekotia te -2x me -6x, ka -8x.
-x^{2}-8x+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -8 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 8}}{2\left(-1\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 8}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-8\right)±\sqrt{64+32}}{2\left(-1\right)}
Whakareatia 4 ki te 8.
x=\frac{-\left(-8\right)±\sqrt{96}}{2\left(-1\right)}
Tāpiri 64 ki te 32.
x=\frac{-\left(-8\right)±4\sqrt{6}}{2\left(-1\right)}
Tuhia te pūtakerua o te 96.
x=\frac{8±4\sqrt{6}}{2\left(-1\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±4\sqrt{6}}{-2}
Whakareatia 2 ki te -1.
x=\frac{4\sqrt{6}+8}{-2}
Nā, me whakaoti te whārite x=\frac{8±4\sqrt{6}}{-2} ina he tāpiri te ±. Tāpiri 8 ki te 4\sqrt{6}.
x=-2\sqrt{6}-4
Whakawehe 8+4\sqrt{6} ki te -2.
x=\frac{8-4\sqrt{6}}{-2}
Nā, me whakaoti te whārite x=\frac{8±4\sqrt{6}}{-2} ina he tango te ±. Tango 4\sqrt{6} mai i 8.
x=2\sqrt{6}-4
Whakawehe 8-4\sqrt{6} ki te -2.
x=-2\sqrt{6}-4 x=2\sqrt{6}-4
Kua oti te whārite te whakatau.
-2x+6+2=\left(x+6\right)x
Pahekotia te x me -3x, ka -2x.
-2x+8=\left(x+6\right)x
Tāpirihia te 6 ki te 2, ka 8.
-2x+8=x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te x+6 ki te x.
-2x+8-x^{2}=6x
Tangohia te x^{2} mai i ngā taha e rua.
-2x+8-x^{2}-6x=0
Tangohia te 6x mai i ngā taha e rua.
-8x+8-x^{2}=0
Pahekotia te -2x me -6x, ka -8x.
-8x-x^{2}=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-8x=-8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=-\frac{8}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{8}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+8x=-\frac{8}{-1}
Whakawehe -8 ki te -1.
x^{2}+8x=8
Whakawehe -8 ki te -1.
x^{2}+8x+4^{2}=8+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=8+16
Pūrua 4.
x^{2}+8x+16=24
Tāpiri 8 ki te 16.
\left(x+4\right)^{2}=24
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{24}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=2\sqrt{6} x+4=-2\sqrt{6}
Whakarūnātia.
x=2\sqrt{6}-4 x=-2\sqrt{6}-4
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}