Whakaoti mō x
x=-2
x=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+12x+36-16=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+6\right)^{2}.
x^{2}+12x+20=0
Tangohia te 16 i te 36, ka 20.
a+b=12 ab=20
Hei whakaoti i te whārite, whakatauwehea te x^{2}+12x+20 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,20 2,10 4,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
1+20=21 2+10=12 4+5=9
Tātaihia te tapeke mō ia takirua.
a=2 b=10
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x+2\right)\left(x+10\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-2 x=-10
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+10=0.
x^{2}+12x+36-16=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+6\right)^{2}.
x^{2}+12x+20=0
Tangohia te 16 i te 36, ka 20.
a+b=12 ab=1\times 20=20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,20 2,10 4,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
1+20=21 2+10=12 4+5=9
Tātaihia te tapeke mō ia takirua.
a=2 b=10
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x^{2}+2x\right)+\left(10x+20\right)
Tuhia anō te x^{2}+12x+20 hei \left(x^{2}+2x\right)+\left(10x+20\right).
x\left(x+2\right)+10\left(x+2\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x+2\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-10
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+10=0.
x^{2}+12x+36-16=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+6\right)^{2}.
x^{2}+12x+20=0
Tangohia te 16 i te 36, ka 20.
x=\frac{-12±\sqrt{12^{2}-4\times 20}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 20}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144-80}}{2}
Whakareatia -4 ki te 20.
x=\frac{-12±\sqrt{64}}{2}
Tāpiri 144 ki te -80.
x=\frac{-12±8}{2}
Tuhia te pūtakerua o te 64.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-12±8}{2} ina he tāpiri te ±. Tāpiri -12 ki te 8.
x=-2
Whakawehe -4 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-12±8}{2} ina he tango te ±. Tango 8 mai i -12.
x=-10
Whakawehe -20 ki te 2.
x=-2 x=-10
Kua oti te whārite te whakatau.
x^{2}+12x+36-16=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+6\right)^{2}.
x^{2}+12x+20=0
Tangohia te 16 i te 36, ka 20.
x^{2}+12x=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+12x+6^{2}=-20+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=-20+36
Pūrua 6.
x^{2}+12x+36=16
Tāpiri -20 ki te 36.
\left(x+6\right)^{2}=16
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=4 x+6=-4
Whakarūnātia.
x=-2 x=-10
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}