Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+12x+36=\left(x+14\right)\left(x+2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+6\right)^{2}.
x^{2}+12x+36=x^{2}+16x+28
Whakamahia te āhuatanga tuaritanga hei whakarea te x+14 ki te x+2 ka whakakotahi i ngā kupu rite.
x^{2}+12x+36-x^{2}=16x+28
Tangohia te x^{2} mai i ngā taha e rua.
12x+36=16x+28
Pahekotia te x^{2} me -x^{2}, ka 0.
12x+36-16x=28
Tangohia te 16x mai i ngā taha e rua.
-4x+36=28
Pahekotia te 12x me -16x, ka -4x.
-4x=28-36
Tangohia te 36 mai i ngā taha e rua.
-4x=-8
Tangohia te 36 i te 28, ka -8.
x=\frac{-8}{-4}
Whakawehea ngā taha e rua ki te -4.
x=2
Whakawehea te -8 ki te -4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}