Aromātai
x^{2}+3x+3
Whakaroha
x^{2}+3x+3
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( x + 5 - x ^ { 2 } ) + 2 \cdot ( x - 1 + x ^ { 2 } ) =
Tohaina
Kua tāruatia ki te papatopenga
x+5-x^{2}+2x-2+2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1+x^{2}.
3x+5-x^{2}-2+2x^{2}
Pahekotia te x me 2x, ka 3x.
3x+3-x^{2}+2x^{2}
Tangohia te 2 i te 5, ka 3.
3x+3+x^{2}
Pahekotia te -x^{2} me 2x^{2}, ka x^{2}.
x+5-x^{2}+2x-2+2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1+x^{2}.
3x+5-x^{2}-2+2x^{2}
Pahekotia te x me 2x, ka 3x.
3x+3-x^{2}+2x^{2}
Tangohia te 2 i te 5, ka 3.
3x+3+x^{2}
Pahekotia te -x^{2} me 2x^{2}, ka x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}