Whakaoti mō x (complex solution)
x=\frac{-\sqrt{519}i+11}{8}\approx 1.375-2.847696437i
x=\frac{11+\sqrt{519}i}{8}\approx 1.375+2.847696437i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( x + 5 ) ( x - 8 ) = 2 x ( x + 5 ) + 3 x ( x - 8 )
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-3x-40=2x\left(x+5\right)+3x\left(x-8\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-8 ka whakakotahi i ngā kupu rite.
x^{2}-3x-40=2x^{2}+10x+3x\left(x-8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+5.
x^{2}-3x-40=2x^{2}+10x+3x^{2}-24x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-8.
x^{2}-3x-40=5x^{2}+10x-24x
Pahekotia te 2x^{2} me 3x^{2}, ka 5x^{2}.
x^{2}-3x-40=5x^{2}-14x
Pahekotia te 10x me -24x, ka -14x.
x^{2}-3x-40-5x^{2}=-14x
Tangohia te 5x^{2} mai i ngā taha e rua.
-4x^{2}-3x-40=-14x
Pahekotia te x^{2} me -5x^{2}, ka -4x^{2}.
-4x^{2}-3x-40+14x=0
Me tāpiri te 14x ki ngā taha e rua.
-4x^{2}+11x-40=0
Pahekotia te -3x me 14x, ka 11x.
x=\frac{-11±\sqrt{11^{2}-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 11 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
Pūrua 11.
x=\frac{-11±\sqrt{121+16\left(-40\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-11±\sqrt{121-640}}{2\left(-4\right)}
Whakareatia 16 ki te -40.
x=\frac{-11±\sqrt{-519}}{2\left(-4\right)}
Tāpiri 121 ki te -640.
x=\frac{-11±\sqrt{519}i}{2\left(-4\right)}
Tuhia te pūtakerua o te -519.
x=\frac{-11±\sqrt{519}i}{-8}
Whakareatia 2 ki te -4.
x=\frac{-11+\sqrt{519}i}{-8}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{519}i}{-8} ina he tāpiri te ±. Tāpiri -11 ki te i\sqrt{519}.
x=\frac{-\sqrt{519}i+11}{8}
Whakawehe -11+i\sqrt{519} ki te -8.
x=\frac{-\sqrt{519}i-11}{-8}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{519}i}{-8} ina he tango te ±. Tango i\sqrt{519} mai i -11.
x=\frac{11+\sqrt{519}i}{8}
Whakawehe -11-i\sqrt{519} ki te -8.
x=\frac{-\sqrt{519}i+11}{8} x=\frac{11+\sqrt{519}i}{8}
Kua oti te whārite te whakatau.
x^{2}-3x-40=2x\left(x+5\right)+3x\left(x-8\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-8 ka whakakotahi i ngā kupu rite.
x^{2}-3x-40=2x^{2}+10x+3x\left(x-8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+5.
x^{2}-3x-40=2x^{2}+10x+3x^{2}-24x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-8.
x^{2}-3x-40=5x^{2}+10x-24x
Pahekotia te 2x^{2} me 3x^{2}, ka 5x^{2}.
x^{2}-3x-40=5x^{2}-14x
Pahekotia te 10x me -24x, ka -14x.
x^{2}-3x-40-5x^{2}=-14x
Tangohia te 5x^{2} mai i ngā taha e rua.
-4x^{2}-3x-40=-14x
Pahekotia te x^{2} me -5x^{2}, ka -4x^{2}.
-4x^{2}-3x-40+14x=0
Me tāpiri te 14x ki ngā taha e rua.
-4x^{2}+11x-40=0
Pahekotia te -3x me 14x, ka 11x.
-4x^{2}+11x=40
Me tāpiri te 40 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-4x^{2}+11x}{-4}=\frac{40}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{11}{-4}x=\frac{40}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-\frac{11}{4}x=\frac{40}{-4}
Whakawehe 11 ki te -4.
x^{2}-\frac{11}{4}x=-10
Whakawehe 40 ki te -4.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=-10+\left(-\frac{11}{8}\right)^{2}
Whakawehea te -\frac{11}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{8}. Nā, tāpiria te pūrua o te -\frac{11}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-10+\frac{121}{64}
Pūruatia -\frac{11}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-\frac{519}{64}
Tāpiri -10 ki te \frac{121}{64}.
\left(x-\frac{11}{8}\right)^{2}=-\frac{519}{64}
Tauwehea x^{2}-\frac{11}{4}x+\frac{121}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{-\frac{519}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{8}=\frac{\sqrt{519}i}{8} x-\frac{11}{8}=-\frac{\sqrt{519}i}{8}
Whakarūnātia.
x=\frac{11+\sqrt{519}i}{8} x=\frac{-\sqrt{519}i+11}{8}
Me tāpiri \frac{11}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}