Whakaoti mō x
x=-10
x=-5
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( x + 5 ) ( 2 x + 7 ) - ( x + 5 ) ( x - 3 ) = 0
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te 2x+7 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-x^{2}-2x+15=0
Hei kimi i te tauaro o x^{2}+2x-15, kimihia te tauaro o ia taurangi.
x^{2}+17x+35-2x+15=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+15x+35+15=0
Pahekotia te 17x me -2x, ka 15x.
x^{2}+15x+50=0
Tāpirihia te 35 ki te 15, ka 50.
a+b=15 ab=50
Hei whakaoti i te whārite, whakatauwehea te x^{2}+15x+50 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,50 2,25 5,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 50.
1+50=51 2+25=27 5+10=15
Tātaihia te tapeke mō ia takirua.
a=5 b=10
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(x+5\right)\left(x+10\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-5 x=-10
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+10=0.
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te 2x+7 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-x^{2}-2x+15=0
Hei kimi i te tauaro o x^{2}+2x-15, kimihia te tauaro o ia taurangi.
x^{2}+17x+35-2x+15=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+15x+35+15=0
Pahekotia te 17x me -2x, ka 15x.
x^{2}+15x+50=0
Tāpirihia te 35 ki te 15, ka 50.
a+b=15 ab=1\times 50=50
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+50. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,50 2,25 5,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 50.
1+50=51 2+25=27 5+10=15
Tātaihia te tapeke mō ia takirua.
a=5 b=10
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(x^{2}+5x\right)+\left(10x+50\right)
Tuhia anō te x^{2}+15x+50 hei \left(x^{2}+5x\right)+\left(10x+50\right).
x\left(x+5\right)+10\left(x+5\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x+5\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-5 x=-10
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+10=0.
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te 2x+7 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-x^{2}-2x+15=0
Hei kimi i te tauaro o x^{2}+2x-15, kimihia te tauaro o ia taurangi.
x^{2}+17x+35-2x+15=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+15x+35+15=0
Pahekotia te 17x me -2x, ka 15x.
x^{2}+15x+50=0
Tāpirihia te 35 ki te 15, ka 50.
x=\frac{-15±\sqrt{15^{2}-4\times 50}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 15 mō b, me 50 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 50}}{2}
Pūrua 15.
x=\frac{-15±\sqrt{225-200}}{2}
Whakareatia -4 ki te 50.
x=\frac{-15±\sqrt{25}}{2}
Tāpiri 225 ki te -200.
x=\frac{-15±5}{2}
Tuhia te pūtakerua o te 25.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{-15±5}{2} ina he tāpiri te ±. Tāpiri -15 ki te 5.
x=-5
Whakawehe -10 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-15±5}{2} ina he tango te ±. Tango 5 mai i -15.
x=-10
Whakawehe -20 ki te 2.
x=-5 x=-10
Kua oti te whārite te whakatau.
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te 2x+7 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}+17x+35-x^{2}-2x+15=0
Hei kimi i te tauaro o x^{2}+2x-15, kimihia te tauaro o ia taurangi.
x^{2}+17x+35-2x+15=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+15x+35+15=0
Pahekotia te 17x me -2x, ka 15x.
x^{2}+15x+50=0
Tāpirihia te 35 ki te 15, ka 50.
x^{2}+15x=-50
Tangohia te 50 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-50+\left(\frac{15}{2}\right)^{2}
Whakawehea te 15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{2}. Nā, tāpiria te pūrua o te \frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+15x+\frac{225}{4}=-50+\frac{225}{4}
Pūruatia \frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+15x+\frac{225}{4}=\frac{25}{4}
Tāpiri -50 ki te \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}+15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{2}=\frac{5}{2} x+\frac{15}{2}=-\frac{5}{2}
Whakarūnātia.
x=-5 x=-10
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}