Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+5x=24
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te x.
x^{2}+5x-24=0
Tangohia te 24 mai i ngā taha e rua.
x=\frac{-5±\sqrt{5^{2}-4\left(-24\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-24\right)}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25+96}}{2}
Whakareatia -4 ki te -24.
x=\frac{-5±\sqrt{121}}{2}
Tāpiri 25 ki te 96.
x=\frac{-5±11}{2}
Tuhia te pūtakerua o te 121.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-5±11}{2} ina he tāpiri te ±. Tāpiri -5 ki te 11.
x=3
Whakawehe 6 ki te 2.
x=-\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{-5±11}{2} ina he tango te ±. Tango 11 mai i -5.
x=-8
Whakawehe -16 ki te 2.
x=3 x=-8
Kua oti te whārite te whakatau.
x^{2}+5x=24
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te x.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=24+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=24+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{121}{4}
Tāpiri 24 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{11}{2} x+\frac{5}{2}=-\frac{11}{2}
Whakarūnātia.
x=3 x=-8
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.