Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+10x+25-36=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
x^{2}+10x-11=0
Tangohia te 36 i te 25, ka -11.
a+b=10 ab=-11
Hei whakaoti i te whārite, whakatauwehea te x^{2}+10x-11 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=11
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x+11\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-11
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+11=0.
x^{2}+10x+25-36=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
x^{2}+10x-11=0
Tangohia te 36 i te 25, ka -11.
a+b=10 ab=1\left(-11\right)=-11
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-11. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=11
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(11x-11\right)
Tuhia anō te x^{2}+10x-11 hei \left(x^{2}-x\right)+\left(11x-11\right).
x\left(x-1\right)+11\left(x-1\right)
Tauwehea te x i te tuatahi me te 11 i te rōpū tuarua.
\left(x-1\right)\left(x+11\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-11
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+11=0.
x^{2}+10x+25-36=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
x^{2}+10x-11=0
Tangohia te 36 i te 25, ka -11.
x=\frac{-10±\sqrt{10^{2}-4\left(-11\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 10 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-11\right)}}{2}
Pūrua 10.
x=\frac{-10±\sqrt{100+44}}{2}
Whakareatia -4 ki te -11.
x=\frac{-10±\sqrt{144}}{2}
Tāpiri 100 ki te 44.
x=\frac{-10±12}{2}
Tuhia te pūtakerua o te 144.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-10±12}{2} ina he tāpiri te ±. Tāpiri -10 ki te 12.
x=1
Whakawehe 2 ki te 2.
x=-\frac{22}{2}
Nā, me whakaoti te whārite x=\frac{-10±12}{2} ina he tango te ±. Tango 12 mai i -10.
x=-11
Whakawehe -22 ki te 2.
x=1 x=-11
Kua oti te whārite te whakatau.
x^{2}+10x+25-36=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
x^{2}+10x-11=0
Tangohia te 36 i te 25, ka -11.
x^{2}+10x=11
Me tāpiri te 11 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+10x+5^{2}=11+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=11+25
Pūrua 5.
x^{2}+10x+25=36
Tāpiri 11 ki te 25.
\left(x+5\right)^{2}=36
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=6 x+5=-6
Whakarūnātia.
x=1 x=-11
Me tango 5 mai i ngā taha e rua o te whārite.