Whakaoti mō x (complex solution)
x=-19+12i
x=-19-12i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( x + 43 ) ^ { 2 } + ( 2 x + 34 - 8 ) ^ { 2 } = 0
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+86x+1849+\left(2x+34-8\right)^{2}=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+43\right)^{2}.
x^{2}+86x+1849+\left(2x+26\right)^{2}=0
Tangohia te 8 i te 34, ka 26.
x^{2}+86x+1849+4x^{2}+104x+676=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+26\right)^{2}.
5x^{2}+86x+1849+104x+676=0
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+190x+1849+676=0
Pahekotia te 86x me 104x, ka 190x.
5x^{2}+190x+2525=0
Tāpirihia te 1849 ki te 676, ka 2525.
x=\frac{-190±\sqrt{190^{2}-4\times 5\times 2525}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 190 mō b, me 2525 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-190±\sqrt{36100-4\times 5\times 2525}}{2\times 5}
Pūrua 190.
x=\frac{-190±\sqrt{36100-20\times 2525}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-190±\sqrt{36100-50500}}{2\times 5}
Whakareatia -20 ki te 2525.
x=\frac{-190±\sqrt{-14400}}{2\times 5}
Tāpiri 36100 ki te -50500.
x=\frac{-190±120i}{2\times 5}
Tuhia te pūtakerua o te -14400.
x=\frac{-190±120i}{10}
Whakareatia 2 ki te 5.
x=\frac{-190+120i}{10}
Nā, me whakaoti te whārite x=\frac{-190±120i}{10} ina he tāpiri te ±. Tāpiri -190 ki te 120i.
x=-19+12i
Whakawehe -190+120i ki te 10.
x=\frac{-190-120i}{10}
Nā, me whakaoti te whārite x=\frac{-190±120i}{10} ina he tango te ±. Tango 120i mai i -190.
x=-19-12i
Whakawehe -190-120i ki te 10.
x=-19+12i x=-19-12i
Kua oti te whārite te whakatau.
x^{2}+86x+1849+\left(2x+34-8\right)^{2}=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+43\right)^{2}.
x^{2}+86x+1849+\left(2x+26\right)^{2}=0
Tangohia te 8 i te 34, ka 26.
x^{2}+86x+1849+4x^{2}+104x+676=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+26\right)^{2}.
5x^{2}+86x+1849+104x+676=0
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+190x+1849+676=0
Pahekotia te 86x me 104x, ka 190x.
5x^{2}+190x+2525=0
Tāpirihia te 1849 ki te 676, ka 2525.
5x^{2}+190x=-2525
Tangohia te 2525 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{5x^{2}+190x}{5}=-\frac{2525}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{190}{5}x=-\frac{2525}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+38x=-\frac{2525}{5}
Whakawehe 190 ki te 5.
x^{2}+38x=-505
Whakawehe -2525 ki te 5.
x^{2}+38x+19^{2}=-505+19^{2}
Whakawehea te 38, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 19. Nā, tāpiria te pūrua o te 19 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+38x+361=-505+361
Pūrua 19.
x^{2}+38x+361=-144
Tāpiri -505 ki te 361.
\left(x+19\right)^{2}=-144
Tauwehea x^{2}+38x+361. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+19\right)^{2}}=\sqrt{-144}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+19=12i x+19=-12i
Whakarūnātia.
x=-19+12i x=-19-12i
Me tango 19 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}