Aromātai
21x-16
Whakaroha
21x-16
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+9x+20-\left(x-6\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+4 ki te x+5 ka whakakotahi i ngā kupu rite.
x^{2}+9x+20-\left(x^{2}-12x+36\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-6\right)^{2}.
x^{2}+9x+20-x^{2}+12x-36
Hei kimi i te tauaro o x^{2}-12x+36, kimihia te tauaro o ia taurangi.
9x+20+12x-36
Pahekotia te x^{2} me -x^{2}, ka 0.
21x+20-36
Pahekotia te 9x me 12x, ka 21x.
21x-16
Tangohia te 36 i te 20, ka -16.
x^{2}+9x+20-\left(x-6\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+4 ki te x+5 ka whakakotahi i ngā kupu rite.
x^{2}+9x+20-\left(x^{2}-12x+36\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-6\right)^{2}.
x^{2}+9x+20-x^{2}+12x-36
Hei kimi i te tauaro o x^{2}-12x+36, kimihia te tauaro o ia taurangi.
9x+20+12x-36
Pahekotia te x^{2} me -x^{2}, ka 0.
21x+20-36
Pahekotia te 9x me 12x, ka 21x.
21x-16
Tangohia te 36 i te 20, ka -16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}