Whakaoti mō x
x=\sqrt{13}-2\approx 1.605551275
x=-\left(\sqrt{13}+2\right)\approx -5.605551275
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-7-\left(x-2\right)^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Tangohia te 10 i te 3, ka -7.
x-7-\left(x^{2}-4x+4\right)=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x-7-x^{2}+4x-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Hei kimi i te tauaro o x^{2}-4x+4, kimihia te tauaro o ia taurangi.
5x-7-x^{2}-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Pahekotia te x me 4x, ka 5x.
5x-11-x^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Tangohia te 4 i te -7, ka -11.
5x-11-x^{2}=x^{2}-2x+1-\left(x-5\right)^{2}+4+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-\left(x^{2}-10x+25\right)+4+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-x^{2}+10x-25+4+x
Hei kimi i te tauaro o x^{2}-10x+25, kimihia te tauaro o ia taurangi.
5x-11-x^{2}=-2x+1+10x-25+4+x
Pahekotia te x^{2} me -x^{2}, ka 0.
5x-11-x^{2}=8x+1-25+4+x
Pahekotia te -2x me 10x, ka 8x.
5x-11-x^{2}=8x-24+4+x
Tangohia te 25 i te 1, ka -24.
5x-11-x^{2}=8x-20+x
Tāpirihia te -24 ki te 4, ka -20.
5x-11-x^{2}=9x-20
Pahekotia te 8x me x, ka 9x.
5x-11-x^{2}-9x=-20
Tangohia te 9x mai i ngā taha e rua.
-4x-11-x^{2}=-20
Pahekotia te 5x me -9x, ka -4x.
-4x-11-x^{2}+20=0
Me tāpiri te 20 ki ngā taha e rua.
-4x+9-x^{2}=0
Tāpirihia te -11 ki te 20, ka 9.
-x^{2}-4x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -4 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 9}}{2\left(-1\right)}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 9}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2\left(-1\right)}
Whakareatia 4 ki te 9.
x=\frac{-\left(-4\right)±\sqrt{52}}{2\left(-1\right)}
Tāpiri 16 ki te 36.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2\left(-1\right)}
Tuhia te pūtakerua o te 52.
x=\frac{4±2\sqrt{13}}{2\left(-1\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{13}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{13}+4}{-2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{13}}{-2} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{13}.
x=-\left(\sqrt{13}+2\right)
Whakawehe 4+2\sqrt{13} ki te -2.
x=\frac{4-2\sqrt{13}}{-2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{13}}{-2} ina he tango te ±. Tango 2\sqrt{13} mai i 4.
x=\sqrt{13}-2
Whakawehe 4-2\sqrt{13} ki te -2.
x=-\left(\sqrt{13}+2\right) x=\sqrt{13}-2
Kua oti te whārite te whakatau.
x-7-\left(x-2\right)^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Tangohia te 10 i te 3, ka -7.
x-7-\left(x^{2}-4x+4\right)=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x-7-x^{2}+4x-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Hei kimi i te tauaro o x^{2}-4x+4, kimihia te tauaro o ia taurangi.
5x-7-x^{2}-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Pahekotia te x me 4x, ka 5x.
5x-11-x^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Tangohia te 4 i te -7, ka -11.
5x-11-x^{2}=x^{2}-2x+1-\left(x-5\right)^{2}+4+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-\left(x^{2}-10x+25\right)+4+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-x^{2}+10x-25+4+x
Hei kimi i te tauaro o x^{2}-10x+25, kimihia te tauaro o ia taurangi.
5x-11-x^{2}=-2x+1+10x-25+4+x
Pahekotia te x^{2} me -x^{2}, ka 0.
5x-11-x^{2}=8x+1-25+4+x
Pahekotia te -2x me 10x, ka 8x.
5x-11-x^{2}=8x-24+4+x
Tangohia te 25 i te 1, ka -24.
5x-11-x^{2}=8x-20+x
Tāpirihia te -24 ki te 4, ka -20.
5x-11-x^{2}=9x-20
Pahekotia te 8x me x, ka 9x.
5x-11-x^{2}-9x=-20
Tangohia te 9x mai i ngā taha e rua.
-4x-11-x^{2}=-20
Pahekotia te 5x me -9x, ka -4x.
-4x-x^{2}=-20+11
Me tāpiri te 11 ki ngā taha e rua.
-4x-x^{2}=-9
Tāpirihia te -20 ki te 11, ka -9.
-x^{2}-4x=-9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-4x}{-1}=-\frac{9}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{9}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+4x=-\frac{9}{-1}
Whakawehe -4 ki te -1.
x^{2}+4x=9
Whakawehe -9 ki te -1.
x^{2}+4x+2^{2}=9+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=9+4
Pūrua 2.
x^{2}+4x+4=13
Tāpiri 9 ki te 4.
\left(x+2\right)^{2}=13
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\sqrt{13} x+2=-\sqrt{13}
Whakarūnātia.
x=\sqrt{13}-2 x=-\sqrt{13}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}