Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-2x-15=9
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{2}-2x-15-9=0
Tangohia te 9 mai i ngā taha e rua.
x^{2}-2x-24=0
Tangohia te 9 i te -15, ka -24.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-24\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-24\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2}
Whakareatia -4 ki te -24.
x=\frac{-\left(-2\right)±\sqrt{100}}{2}
Tāpiri 4 ki te 96.
x=\frac{-\left(-2\right)±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{2±10}{2}
Ko te tauaro o -2 ko 2.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{2±10}{2} ina he tāpiri te ±. Tāpiri 2 ki te 10.
x=6
Whakawehe 12 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{2±10}{2} ina he tango te ±. Tango 10 mai i 2.
x=-4
Whakawehe -8 ki te 2.
x=6 x=-4
Kua oti te whārite te whakatau.
x^{2}-2x-15=9
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{2}-2x=9+15
Me tāpiri te 15 ki ngā taha e rua.
x^{2}-2x=24
Tāpirihia te 9 ki te 15, ka 24.
x^{2}-2x+1=24+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=25
Tāpiri 24 ki te 1.
\left(x-1\right)^{2}=25
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=5 x-1=-5
Whakarūnātia.
x=6 x=-4
Me tāpiri 1 ki ngā taha e rua o te whārite.