Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-9=5
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}=5+9
Me tāpiri te 9 ki ngā taha e rua.
x^{2}=14
Tāpirihia te 5 ki te 9, ka 14.
x=\sqrt{14} x=-\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-9=5
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-9-5=0
Tangohia te 5 mai i ngā taha e rua.
x^{2}-14=0
Tangohia te 5 i te -9, ka -14.
x=\frac{0±\sqrt{0^{2}-4\left(-14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-14\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{56}}{2}
Whakareatia -4 ki te -14.
x=\frac{0±2\sqrt{14}}{2}
Tuhia te pūtakerua o te 56.
x=\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{14}}{2} ina he tāpiri te ±.
x=-\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{14}}{2} ina he tango te ±.
x=\sqrt{14} x=-\sqrt{14}
Kua oti te whārite te whakatau.