Whakaoti mō x
x=\sqrt{14}\approx 3.741657387
x=-\sqrt{14}\approx -3.741657387
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-9=5
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}=5+9
Me tāpiri te 9 ki ngā taha e rua.
x^{2}=14
Tāpirihia te 5 ki te 9, ka 14.
x=\sqrt{14} x=-\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-9=5
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-9-5=0
Tangohia te 5 mai i ngā taha e rua.
x^{2}-14=0
Tangohia te 5 i te -9, ka -14.
x=\frac{0±\sqrt{0^{2}-4\left(-14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-14\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{56}}{2}
Whakareatia -4 ki te -14.
x=\frac{0±2\sqrt{14}}{2}
Tuhia te pūtakerua o te 56.
x=\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{14}}{2} ina he tāpiri te ±.
x=-\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{14}}{2} ina he tango te ±.
x=\sqrt{14} x=-\sqrt{14}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}