Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-9=40
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}=40+9
Me tāpiri te 9 ki ngā taha e rua.
x^{2}=49
Tāpirihia te 40 ki te 9, ka 49.
x=7 x=-7
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-9=40
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-9-40=0
Tangohia te 40 mai i ngā taha e rua.
x^{2}-49=0
Tangohia te 40 i te -9, ka -49.
x=\frac{0±\sqrt{0^{2}-4\left(-49\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -49 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-49\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{196}}{2}
Whakareatia -4 ki te -49.
x=\frac{0±14}{2}
Tuhia te pūtakerua o te 196.
x=7
Nā, me whakaoti te whārite x=\frac{0±14}{2} ina he tāpiri te ±. Whakawehe 14 ki te 2.
x=-7
Nā, me whakaoti te whārite x=\frac{0±14}{2} ina he tango te ±. Whakawehe -14 ki te 2.
x=7 x=-7
Kua oti te whārite te whakatau.