Whakaoti mō x
x=3\sqrt{2}+3\approx 7.242640687
x=3-3\sqrt{2}\approx -1.242640687
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x+9-x^{2}=x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
6x+9=x^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
6x+9-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+6x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 6 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 9}}{2\left(-1\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+4\times 9}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-6±\sqrt{36+36}}{2\left(-1\right)}
Whakareatia 4 ki te 9.
x=\frac{-6±\sqrt{72}}{2\left(-1\right)}
Tāpiri 36 ki te 36.
x=\frac{-6±6\sqrt{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te 72.
x=\frac{-6±6\sqrt{2}}{-2}
Whakareatia 2 ki te -1.
x=\frac{6\sqrt{2}-6}{-2}
Nā, me whakaoti te whārite x=\frac{-6±6\sqrt{2}}{-2} ina he tāpiri te ±. Tāpiri -6 ki te 6\sqrt{2}.
x=3-3\sqrt{2}
Whakawehe -6+6\sqrt{2} ki te -2.
x=\frac{-6\sqrt{2}-6}{-2}
Nā, me whakaoti te whārite x=\frac{-6±6\sqrt{2}}{-2} ina he tango te ±. Tango 6\sqrt{2} mai i -6.
x=3\sqrt{2}+3
Whakawehe -6-6\sqrt{2} ki te -2.
x=3-3\sqrt{2} x=3\sqrt{2}+3
Kua oti te whārite te whakatau.
x^{2}+6x+9-x^{2}=x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
6x+9=x^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
6x+9-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
6x-x^{2}=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}+6x=-9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+6x}{-1}=-\frac{9}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{6}{-1}x=-\frac{9}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-6x=-\frac{9}{-1}
Whakawehe 6 ki te -1.
x^{2}-6x=9
Whakawehe -9 ki te -1.
x^{2}-6x+\left(-3\right)^{2}=9+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=9+9
Pūrua -3.
x^{2}-6x+9=18
Tāpiri 9 ki te 9.
\left(x-3\right)^{2}=18
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{18}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=3\sqrt{2} x-3=-3\sqrt{2}
Whakarūnātia.
x=3\sqrt{2}+3 x=3-3\sqrt{2}
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}