Whakaoti mō x
x=1
x=-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x+9=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}+6x-7=0
Tangohia te 16 i te 9, ka -7.
a+b=6 ab=-7
Hei whakaoti i te whārite, whakatauwehea te x^{2}+6x-7 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-7
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+7=0.
x^{2}+6x+9=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}+6x-7=0
Tangohia te 16 i te 9, ka -7.
a+b=6 ab=1\left(-7\right)=-7
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(7x-7\right)
Tuhia anō te x^{2}+6x-7 hei \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-1\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-7
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+7=0.
x^{2}+6x+9=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}+6x-7=0
Tangohia te 16 i te 9, ka -7.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+28}}{2}
Whakareatia -4 ki te -7.
x=\frac{-6±\sqrt{64}}{2}
Tāpiri 36 ki te 28.
x=\frac{-6±8}{2}
Tuhia te pūtakerua o te 64.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-6±8}{2} ina he tāpiri te ±. Tāpiri -6 ki te 8.
x=1
Whakawehe 2 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-6±8}{2} ina he tango te ±. Tango 8 mai i -6.
x=-7
Whakawehe -14 ki te 2.
x=1 x=-7
Kua oti te whārite te whakatau.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=4 x+3=-4
Whakarūnātia.
x=1 x=-7
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}