Whakaoti mō x
x=-3
x = \frac{24}{7} = 3\frac{3}{7} \approx 3.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Whakaarohia te \left(3x-8\right)\left(3x+8\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 8.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Whakarohaina te \left(3x\right)^{2}.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
Tangohia te 64 i te 9, ka -55.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
Tāpirihia te -55 ki te 1, ka -54.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
10x^{2}+6x-54=3x^{2}+9x+18
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}+3x+6.
10x^{2}+6x-54-3x^{2}=9x+18
Tangohia te 3x^{2} mai i ngā taha e rua.
7x^{2}+6x-54=9x+18
Pahekotia te 10x^{2} me -3x^{2}, ka 7x^{2}.
7x^{2}+6x-54-9x=18
Tangohia te 9x mai i ngā taha e rua.
7x^{2}-3x-54=18
Pahekotia te 6x me -9x, ka -3x.
7x^{2}-3x-54-18=0
Tangohia te 18 mai i ngā taha e rua.
7x^{2}-3x-72=0
Tangohia te 18 i te -54, ka -72.
a+b=-3 ab=7\left(-72\right)=-504
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx-72. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-504 2,-252 3,-168 4,-126 6,-84 7,-72 8,-63 9,-56 12,-42 14,-36 18,-28 21,-24
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -504.
1-504=-503 2-252=-250 3-168=-165 4-126=-122 6-84=-78 7-72=-65 8-63=-55 9-56=-47 12-42=-30 14-36=-22 18-28=-10 21-24=-3
Tātaihia te tapeke mō ia takirua.
a=-24 b=21
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(7x^{2}-24x\right)+\left(21x-72\right)
Tuhia anō te 7x^{2}-3x-72 hei \left(7x^{2}-24x\right)+\left(21x-72\right).
x\left(7x-24\right)+3\left(7x-24\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(7x-24\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 7x-24 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{24}{7} x=-3
Hei kimi otinga whārite, me whakaoti te 7x-24=0 me te x+3=0.
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Whakaarohia te \left(3x-8\right)\left(3x+8\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 8.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Whakarohaina te \left(3x\right)^{2}.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
Tangohia te 64 i te 9, ka -55.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
Tāpirihia te -55 ki te 1, ka -54.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
10x^{2}+6x-54=3x^{2}+9x+18
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}+3x+6.
10x^{2}+6x-54-3x^{2}=9x+18
Tangohia te 3x^{2} mai i ngā taha e rua.
7x^{2}+6x-54=9x+18
Pahekotia te 10x^{2} me -3x^{2}, ka 7x^{2}.
7x^{2}+6x-54-9x=18
Tangohia te 9x mai i ngā taha e rua.
7x^{2}-3x-54=18
Pahekotia te 6x me -9x, ka -3x.
7x^{2}-3x-54-18=0
Tangohia te 18 mai i ngā taha e rua.
7x^{2}-3x-72=0
Tangohia te 18 i te -54, ka -72.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-72\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, -3 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-72\right)}}{2\times 7}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-72\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-3\right)±\sqrt{9+2016}}{2\times 7}
Whakareatia -28 ki te -72.
x=\frac{-\left(-3\right)±\sqrt{2025}}{2\times 7}
Tāpiri 9 ki te 2016.
x=\frac{-\left(-3\right)±45}{2\times 7}
Tuhia te pūtakerua o te 2025.
x=\frac{3±45}{2\times 7}
Ko te tauaro o -3 ko 3.
x=\frac{3±45}{14}
Whakareatia 2 ki te 7.
x=\frac{48}{14}
Nā, me whakaoti te whārite x=\frac{3±45}{14} ina he tāpiri te ±. Tāpiri 3 ki te 45.
x=\frac{24}{7}
Whakahekea te hautanga \frac{48}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{42}{14}
Nā, me whakaoti te whārite x=\frac{3±45}{14} ina he tango te ±. Tango 45 mai i 3.
x=-3
Whakawehe -42 ki te 14.
x=\frac{24}{7} x=-3
Kua oti te whārite te whakatau.
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Whakaarohia te \left(3x-8\right)\left(3x+8\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 8.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Whakarohaina te \left(3x\right)^{2}.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
Tangohia te 64 i te 9, ka -55.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
Tāpirihia te -55 ki te 1, ka -54.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
10x^{2}+6x-54=3x^{2}+9x+18
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}+3x+6.
10x^{2}+6x-54-3x^{2}=9x+18
Tangohia te 3x^{2} mai i ngā taha e rua.
7x^{2}+6x-54=9x+18
Pahekotia te 10x^{2} me -3x^{2}, ka 7x^{2}.
7x^{2}+6x-54-9x=18
Tangohia te 9x mai i ngā taha e rua.
7x^{2}-3x-54=18
Pahekotia te 6x me -9x, ka -3x.
7x^{2}-3x=18+54
Me tāpiri te 54 ki ngā taha e rua.
7x^{2}-3x=72
Tāpirihia te 18 ki te 54, ka 72.
\frac{7x^{2}-3x}{7}=\frac{72}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}-\frac{3}{7}x=\frac{72}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=\frac{72}{7}+\left(-\frac{3}{14}\right)^{2}
Whakawehea te -\frac{3}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{14}. Nā, tāpiria te pūrua o te -\frac{3}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{72}{7}+\frac{9}{196}
Pūruatia -\frac{3}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{2025}{196}
Tāpiri \frac{72}{7} ki te \frac{9}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{14}\right)^{2}=\frac{2025}{196}
Tauwehea x^{2}-\frac{3}{7}x+\frac{9}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{\frac{2025}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{14}=\frac{45}{14} x-\frac{3}{14}=-\frac{45}{14}
Whakarūnātia.
x=\frac{24}{7} x=-3
Me tāpiri \frac{3}{14} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}