Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x+2 ki te \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x-1\right)-4}{x-1}
Tā te mea he rite te tauraro o \frac{\left(x+2\right)\left(x-1\right)}{x-1} me \frac{4}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-x+2x-2-4}{x-1}
Mahia ngā whakarea i roto o \left(x+2\right)\left(x-1\right)-4.
\frac{x^{2}+x-6}{x-1}
Whakakotahitia ngā kupu rite i x^{2}-x+2x-2-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x+2 ki te \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)-4}{x-1})
Tā te mea he rite te tauraro o \frac{\left(x+2\right)\left(x-1\right)}{x-1} me \frac{4}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+2x-2-4}{x-1})
Mahia ngā whakarea i roto o \left(x+2\right)\left(x-1\right)-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-6}{x-1})
Whakakotahitia ngā kupu rite i x^{2}-x+2x-2-4.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}-6)-\left(x^{2}+x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+x^{1-1}\right)-\left(x^{2}+x^{1}-6\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+x^{0}\right)-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Whakarūnātia.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Whakareatia x^{1}-1 ki te 2x^{1}+x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}x^{0}+x^{1}x^{0}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Whakareatia x^{2}+x^{1}-6 ki te x^{0}.
\frac{2x^{1+1}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{2}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Whakarūnātia.
\frac{x^{2}-2x^{1}+5x^{0}}{\left(x^{1}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{x^{2}-2x+5x^{0}}{\left(x-1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{x^{2}-2x+5\times 1}{\left(x-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.