Whakaoti mō x
x=-4
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-x-6=\left(3x-2\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}-x-6=3x^{2}+7x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-x-6-3x^{2}=7x-6
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-x-6=7x-6
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}-x-6-7x=-6
Tangohia te 7x mai i ngā taha e rua.
-2x^{2}-8x-6=-6
Pahekotia te -x me -7x, ka -8x.
-2x^{2}-8x-6+6=0
Me tāpiri te 6 ki ngā taha e rua.
-2x^{2}-8x=0
Tāpirihia te -6 ki te 6, ka 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -8 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±8}{2\left(-2\right)}
Tuhia te pūtakerua o te \left(-8\right)^{2}.
x=\frac{8±8}{2\left(-2\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±8}{-4}
Whakareatia 2 ki te -2.
x=\frac{16}{-4}
Nā, me whakaoti te whārite x=\frac{8±8}{-4} ina he tāpiri te ±. Tāpiri 8 ki te 8.
x=-4
Whakawehe 16 ki te -4.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{8±8}{-4} ina he tango te ±. Tango 8 mai i 8.
x=0
Whakawehe 0 ki te -4.
x=-4 x=0
Kua oti te whārite te whakatau.
x^{2}-x-6=\left(3x-2\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}-x-6=3x^{2}+7x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-x-6-3x^{2}=7x-6
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-x-6=7x-6
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}-x-6-7x=-6
Tangohia te 7x mai i ngā taha e rua.
-2x^{2}-8x-6=-6
Pahekotia te -x me -7x, ka -8x.
-2x^{2}-8x=-6+6
Me tāpiri te 6 ki ngā taha e rua.
-2x^{2}-8x=0
Tāpirihia te -6 ki te 6, ka 0.
\frac{-2x^{2}-8x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{8}{-2}\right)x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+4x=\frac{0}{-2}
Whakawehe -8 ki te -2.
x^{2}+4x=0
Whakawehe 0 ki te -2.
x^{2}+4x+2^{2}=2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=4
Pūrua 2.
\left(x+2\right)^{2}=4
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=2 x+2=-2
Whakarūnātia.
x=0 x=-4
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}