Whakaoti mō x
x=2\sqrt{2}-2\approx 0.828427125
x=-2\sqrt{2}-2\approx -4.828427125
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x-2=2-3x
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{2}+x-2-2=-3x
Tangohia te 2 mai i ngā taha e rua.
x^{2}+x-4=-3x
Tangohia te 2 i te -2, ka -4.
x^{2}+x-4+3x=0
Me tāpiri te 3x ki ngā taha e rua.
x^{2}+4x-4=0
Pahekotia te x me 3x, ka 4x.
x=\frac{-4±\sqrt{4^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-4\right)}}{2}
Pūrua 4.
x=\frac{-4±\sqrt{16+16}}{2}
Whakareatia -4 ki te -4.
x=\frac{-4±\sqrt{32}}{2}
Tāpiri 16 ki te 16.
x=\frac{-4±4\sqrt{2}}{2}
Tuhia te pūtakerua o te 32.
x=\frac{4\sqrt{2}-4}{2}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{2}.
x=2\sqrt{2}-2
Whakawehe -4+4\sqrt{2} ki te 2.
x=\frac{-4\sqrt{2}-4}{2}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{2}}{2} ina he tango te ±. Tango 4\sqrt{2} mai i -4.
x=-2\sqrt{2}-2
Whakawehe -4-4\sqrt{2} ki te 2.
x=2\sqrt{2}-2 x=-2\sqrt{2}-2
Kua oti te whārite te whakatau.
x^{2}+x-2=2-3x
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{2}+x-2+3x=2
Me tāpiri te 3x ki ngā taha e rua.
x^{2}+4x-2=2
Pahekotia te x me 3x, ka 4x.
x^{2}+4x=2+2
Me tāpiri te 2 ki ngā taha e rua.
x^{2}+4x=4
Tāpirihia te 2 ki te 2, ka 4.
x^{2}+4x+2^{2}=4+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=4+4
Pūrua 2.
x^{2}+4x+4=8
Tāpiri 4 ki te 4.
\left(x+2\right)^{2}=8
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{8}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=2\sqrt{2} x+2=-2\sqrt{2}
Whakarūnātia.
x=2\sqrt{2}-2 x=-2\sqrt{2}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}