Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+6x+8=12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+4 ka whakakotahi i ngā kupu rite.
x^{2}+6x+8-12=0
Tangohia te 12 mai i ngā taha e rua.
x^{2}+6x-4=0
Tangohia te 12 i te 8, ka -4.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-4\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+16}}{2}
Whakareatia -4 ki te -4.
x=\frac{-6±\sqrt{52}}{2}
Tāpiri 36 ki te 16.
x=\frac{-6±2\sqrt{13}}{2}
Tuhia te pūtakerua o te 52.
x=\frac{2\sqrt{13}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{13}.
x=\sqrt{13}-3
Whakawehe -6+2\sqrt{13} ki te 2.
x=\frac{-2\sqrt{13}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{13}}{2} ina he tango te ±. Tango 2\sqrt{13} mai i -6.
x=-\sqrt{13}-3
Whakawehe -6-2\sqrt{13} ki te 2.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Kua oti te whārite te whakatau.
x^{2}+6x+8=12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+4 ka whakakotahi i ngā kupu rite.
x^{2}+6x=12-8
Tangohia te 8 mai i ngā taha e rua.
x^{2}+6x=4
Tangohia te 8 i te 12, ka 4.
x^{2}+6x+3^{2}=4+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=4+9
Pūrua 3.
x^{2}+6x+9=13
Tāpiri 4 ki te 9.
\left(x+3\right)^{2}=13
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{13} x+3=-\sqrt{13}
Whakarūnātia.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Me tango 3 mai i ngā taha e rua o te whārite.
x^{2}+6x+8=12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+4 ka whakakotahi i ngā kupu rite.
x^{2}+6x+8-12=0
Tangohia te 12 mai i ngā taha e rua.
x^{2}+6x-4=0
Tangohia te 12 i te 8, ka -4.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-4\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+16}}{2}
Whakareatia -4 ki te -4.
x=\frac{-6±\sqrt{52}}{2}
Tāpiri 36 ki te 16.
x=\frac{-6±2\sqrt{13}}{2}
Tuhia te pūtakerua o te 52.
x=\frac{2\sqrt{13}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{13}.
x=\sqrt{13}-3
Whakawehe -6+2\sqrt{13} ki te 2.
x=\frac{-2\sqrt{13}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{13}}{2} ina he tango te ±. Tango 2\sqrt{13} mai i -6.
x=-\sqrt{13}-3
Whakawehe -6-2\sqrt{13} ki te 2.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Kua oti te whārite te whakatau.
x^{2}+6x+8=12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+4 ka whakakotahi i ngā kupu rite.
x^{2}+6x=12-8
Tangohia te 8 mai i ngā taha e rua.
x^{2}+6x=4
Tangohia te 8 i te 12, ka 4.
x^{2}+6x+3^{2}=4+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=4+9
Pūrua 3.
x^{2}+6x+9=13
Tāpiri 4 ki te 9.
\left(x+3\right)^{2}=13
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{13} x+3=-\sqrt{13}
Whakarūnātia.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Me tango 3 mai i ngā taha e rua o te whārite.