Whakaoti mō x
x=-3
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+4x+4-3\left(x+2\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
x^{2}+x+4-6-4=0
Pahekotia te 4x me -3x, ka x.
x^{2}+x-2-4=0
Tangohia te 6 i te 4, ka -2.
x^{2}+x-6=0
Tangohia te 4 i te -2, ka -6.
a+b=1 ab=-6
Hei whakaoti i te whārite, whakatauwehea te x^{2}+x-6 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x-2\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=2 x=-3
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
x^{2}+x+4-6-4=0
Pahekotia te 4x me -3x, ka x.
x^{2}+x-2-4=0
Tangohia te 6 i te 4, ka -2.
x^{2}+x-6=0
Tangohia te 4 i te -2, ka -6.
a+b=1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Tuhia anō te x^{2}+x-6 hei \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-2\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-3
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
x^{2}+x+4-6-4=0
Pahekotia te 4x me -3x, ka x.
x^{2}+x-2-4=0
Tangohia te 6 i te 4, ka -2.
x^{2}+x-6=0
Tangohia te 4 i te -2, ka -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Pūrua 1.
x=\frac{-1±\sqrt{1+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-1±\sqrt{25}}{2}
Tāpiri 1 ki te 24.
x=\frac{-1±5}{2}
Tuhia te pūtakerua o te 25.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-1±5}{2} ina he tāpiri te ±. Tāpiri -1 ki te 5.
x=2
Whakawehe 4 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-1±5}{2} ina he tango te ±. Tango 5 mai i -1.
x=-3
Whakawehe -6 ki te 2.
x=2 x=-3
Kua oti te whārite te whakatau.
x^{2}+4x+4-3\left(x+2\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
x^{2}+x+4-6-4=0
Pahekotia te 4x me -3x, ka x.
x^{2}+x-2-4=0
Tangohia te 6 i te 4, ka -2.
x^{2}+x-6=0
Tangohia te 4 i te -2, ka -6.
x^{2}+x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
x=2 x=-3
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}