Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x+4=36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-36=0
Tangohia te 36 mai i ngā taha e rua.
x^{2}+4x-32=0
Tangohia te 36 i te 4, ka -32.
a+b=4 ab=-32
Hei whakaoti i te whārite, whakatauwehea te x^{2}+4x-32 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,32 -2,16 -4,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -32.
-1+32=31 -2+16=14 -4+8=4
Tātaihia te tapeke mō ia takirua.
a=-4 b=8
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(x-4\right)\left(x+8\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=-8
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+8=0.
x^{2}+4x+4=36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-36=0
Tangohia te 36 mai i ngā taha e rua.
x^{2}+4x-32=0
Tangohia te 36 i te 4, ka -32.
a+b=4 ab=1\left(-32\right)=-32
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-32. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,32 -2,16 -4,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -32.
-1+32=31 -2+16=14 -4+8=4
Tātaihia te tapeke mō ia takirua.
a=-4 b=8
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(x^{2}-4x\right)+\left(8x-32\right)
Tuhia anō te x^{2}+4x-32 hei \left(x^{2}-4x\right)+\left(8x-32\right).
x\left(x-4\right)+8\left(x-4\right)
Tauwehea te x i te tuatahi me te 8 i te rōpū tuarua.
\left(x-4\right)\left(x+8\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-8
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+8=0.
x^{2}+4x+4=36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4-36=0
Tangohia te 36 mai i ngā taha e rua.
x^{2}+4x-32=0
Tangohia te 36 i te 4, ka -32.
x=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
Pūrua 4.
x=\frac{-4±\sqrt{16+128}}{2}
Whakareatia -4 ki te -32.
x=\frac{-4±\sqrt{144}}{2}
Tāpiri 16 ki te 128.
x=\frac{-4±12}{2}
Tuhia te pūtakerua o te 144.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-4±12}{2} ina he tāpiri te ±. Tāpiri -4 ki te 12.
x=4
Whakawehe 8 ki te 2.
x=-\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{-4±12}{2} ina he tango te ±. Tango 12 mai i -4.
x=-8
Whakawehe -16 ki te 2.
x=4 x=-8
Kua oti te whārite te whakatau.
\sqrt{\left(x+2\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=6 x+2=-6
Whakarūnātia.
x=4 x=-8
Me tango 2 mai i ngā taha e rua o te whārite.