Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+11-2x-4=1-3\left(1-x\right)+4\left(2x-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+2.
-x+11-4=1-3\left(1-x\right)+4\left(2x-5\right)
Pahekotia te x me -2x, ka -x.
-x+7=1-3\left(1-x\right)+4\left(2x-5\right)
Tangohia te 4 i te 11, ka 7.
-x+7=1-3+3x+4\left(2x-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-x.
-x+7=-2+3x+4\left(2x-5\right)
Tangohia te 3 i te 1, ka -2.
-x+7=-2+3x+8x-20
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-5.
-x+7=-2+11x-20
Pahekotia te 3x me 8x, ka 11x.
-x+7=-22+11x
Tangohia te 20 i te -2, ka -22.
-x+7-11x=-22
Tangohia te 11x mai i ngā taha e rua.
-12x+7=-22
Pahekotia te -x me -11x, ka -12x.
-12x=-22-7
Tangohia te 7 mai i ngā taha e rua.
-12x=-29
Tangohia te 7 i te -22, ka -29.
x=\frac{-29}{-12}
Whakawehea ngā taha e rua ki te -12.
x=\frac{29}{12}
Ka taea te hautanga \frac{-29}{-12} te whakamāmā ki te \frac{29}{12} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.