Whakaoti mō x
x=-5
x=-15
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+10\right)^{2}=25
Whakareatia te x+10 ki te x+10, ka \left(x+10\right)^{2}.
x^{2}+20x+100=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+10\right)^{2}.
x^{2}+20x+100-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}+20x+75=0
Tangohia te 25 i te 100, ka 75.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 20 mō b, me 75 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
Pūrua 20.
x=\frac{-20±\sqrt{400-300}}{2}
Whakareatia -4 ki te 75.
x=\frac{-20±\sqrt{100}}{2}
Tāpiri 400 ki te -300.
x=\frac{-20±10}{2}
Tuhia te pūtakerua o te 100.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{-20±10}{2} ina he tāpiri te ±. Tāpiri -20 ki te 10.
x=-5
Whakawehe -10 ki te 2.
x=-\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{-20±10}{2} ina he tango te ±. Tango 10 mai i -20.
x=-15
Whakawehe -30 ki te 2.
x=-5 x=-15
Kua oti te whārite te whakatau.
\left(x+10\right)^{2}=25
Whakareatia te x+10 ki te x+10, ka \left(x+10\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+10=5 x+10=-5
Whakarūnātia.
x=-5 x=-15
Me tango 10 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}