Whakaoti mō x
x=-\frac{y-14}{y-2}
y\neq 2
Whakaoti mō y
y=\frac{2\left(x+7\right)}{x+1}
x\neq -1
Graph
Tohaina
Kua tāruatia ki te papatopenga
xy-2x+y-2=12
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te y-2.
xy-2x-2=12-y
Tangohia te y mai i ngā taha e rua.
xy-2x=12-y+2
Me tāpiri te 2 ki ngā taha e rua.
xy-2x=14-y
Tāpirihia te 12 ki te 2, ka 14.
\left(y-2\right)x=14-y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(y-2\right)x}{y-2}=\frac{14-y}{y-2}
Whakawehea ngā taha e rua ki te y-2.
x=\frac{14-y}{y-2}
Mā te whakawehe ki te y-2 ka wetekia te whakareanga ki te y-2.
xy-2x+y-2=12
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te y-2.
xy+y-2=12+2x
Me tāpiri te 2x ki ngā taha e rua.
xy+y=12+2x+2
Me tāpiri te 2 ki ngā taha e rua.
xy+y=14+2x
Tāpirihia te 12 ki te 2, ka 14.
\left(x+1\right)y=14+2x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(x+1\right)y=2x+14
He hanga arowhānui tō te whārite.
\frac{\left(x+1\right)y}{x+1}=\frac{2x+14}{x+1}
Whakawehea ngā taha e rua ki te x+1.
y=\frac{2x+14}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
y=\frac{2\left(x+7\right)}{x+1}
Whakawehe 14+2x ki te x+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}