Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}+3x^{2}+3x+28=0
Me whakaroha te kīanga.
±28,±14,±7,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 28, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-4
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-x+7=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+3x^{2}+3x+28 ki te x+4, kia riro ko x^{2}-x+7. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 7}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te 7 mō te c i te ture pūrua.
x=\frac{1±\sqrt{-27}}{2}
Mahia ngā tātaitai.
x=\frac{-3i\sqrt{3}+1}{2} x=\frac{1+3i\sqrt{3}}{2}
Whakaotia te whārite x^{2}-x+7=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-4 x=\frac{-3i\sqrt{3}+1}{2} x=\frac{1+3i\sqrt{3}}{2}
Rārangitia ngā otinga katoa i kitea.
x^{3}+3x^{2}+3x+28=0
Me whakaroha te kīanga.
±28,±14,±7,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 28, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-4
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-x+7=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+3x^{2}+3x+28 ki te x+4, kia riro ko x^{2}-x+7. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 7}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te 7 mō te c i te ture pūrua.
x=\frac{1±\sqrt{-27}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=-4
Rārangitia ngā otinga katoa i kitea.