Whakaoti mō x
x = \frac{\sqrt{13} + 5}{2} \approx 4.302775638
x=\frac{5-\sqrt{13}}{2}\approx 0.697224362
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+1=\left(2-x\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
x+1=4-4x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
x+1-4=-4x+x^{2}
Tangohia te 4 mai i ngā taha e rua.
x-3=-4x+x^{2}
Tangohia te 4 i te 1, ka -3.
x-3+4x=x^{2}
Me tāpiri te 4x ki ngā taha e rua.
5x-3=x^{2}
Pahekotia te x me 4x, ka 5x.
5x-3-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+5x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 5 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+4\left(-3\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-5±\sqrt{25-12}}{2\left(-1\right)}
Whakareatia 4 ki te -3.
x=\frac{-5±\sqrt{13}}{2\left(-1\right)}
Tāpiri 25 ki te -12.
x=\frac{-5±\sqrt{13}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{13}-5}{-2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{13}}{-2} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{13}.
x=\frac{5-\sqrt{13}}{2}
Whakawehe -5+\sqrt{13} ki te -2.
x=\frac{-\sqrt{13}-5}{-2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{13}}{-2} ina he tango te ±. Tango \sqrt{13} mai i -5.
x=\frac{\sqrt{13}+5}{2}
Whakawehe -5-\sqrt{13} ki te -2.
x=\frac{5-\sqrt{13}}{2} x=\frac{\sqrt{13}+5}{2}
Kua oti te whārite te whakatau.
x+1=\left(2-x\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
x+1=4-4x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
x+1+4x=4+x^{2}
Me tāpiri te 4x ki ngā taha e rua.
5x+1=4+x^{2}
Pahekotia te x me 4x, ka 5x.
5x+1-x^{2}=4
Tangohia te x^{2} mai i ngā taha e rua.
5x-x^{2}=4-1
Tangohia te 1 mai i ngā taha e rua.
5x-x^{2}=3
Tangohia te 1 i te 4, ka 3.
-x^{2}+5x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=\frac{3}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{5}{-1}x=\frac{3}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-5x=\frac{3}{-1}
Whakawehe 5 ki te -1.
x^{2}-5x=-3
Whakawehe 3 ki te -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-3+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=-3+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{13}{4}
Tāpiri -3 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{13}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{\sqrt{13}}{2} x-\frac{5}{2}=-\frac{\sqrt{13}}{2}
Whakarūnātia.
x=\frac{\sqrt{13}+5}{2} x=\frac{5-\sqrt{13}}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}