Whakaoti mō x
x=1
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+x\right)^{2}=4
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(2x\right)^{2}=4
Pahekotia te x me x, ka 2x.
2^{2}x^{2}=4
Whakarohaina te \left(2x\right)^{2}.
4x^{2}=4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}-1=0
Whakawehea ngā taha e rua ki te 4.
\left(x-1\right)\left(x+1\right)=0
Whakaarohia te x^{2}-1. Tuhia anō te x^{2}-1 hei x^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+1=0.
\left(x+x\right)^{2}=4
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(2x\right)^{2}=4
Pahekotia te x me x, ka 2x.
2^{2}x^{2}=4
Whakarohaina te \left(2x\right)^{2}.
4x^{2}=4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}=\frac{4}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}=1
Whakawehea te 4 ki te 4, kia riro ko 1.
x=1 x=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(x+x\right)^{2}=4
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(2x\right)^{2}=4
Pahekotia te x me x, ka 2x.
2^{2}x^{2}=4
Whakarohaina te \left(2x\right)^{2}.
4x^{2}=4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-4\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-4\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-4\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{64}}{2\times 4}
Whakareatia -16 ki te -4.
x=\frac{0±8}{2\times 4}
Tuhia te pūtakerua o te 64.
x=\frac{0±8}{8}
Whakareatia 2 ki te 4.
x=1
Nā, me whakaoti te whārite x=\frac{0±8}{8} ina he tāpiri te ±. Whakawehe 8 ki te 8.
x=-1
Nā, me whakaoti te whārite x=\frac{0±8}{8} ina he tango te ±. Whakawehe -8 ki te 8.
x=1 x=-1
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}