Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

w^{2}-2w+1-3^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(w-1\right)^{2}.
w^{2}-2w+1-9=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
w^{2}-2w-8=0
Tangohia te 9 i te 1, ka -8.
a+b=-2 ab=-8
Hei whakaoti i te whārite, whakatauwehea te w^{2}-2w-8 mā te whakamahi i te tātai w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-4 b=2
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(w-4\right)\left(w+2\right)
Me tuhi anō te kīanga whakatauwehe \left(w+a\right)\left(w+b\right) mā ngā uara i tātaihia.
w=4 w=-2
Hei kimi otinga whārite, me whakaoti te w-4=0 me te w+2=0.
w^{2}-2w+1-3^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(w-1\right)^{2}.
w^{2}-2w+1-9=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
w^{2}-2w-8=0
Tangohia te 9 i te 1, ka -8.
a+b=-2 ab=1\left(-8\right)=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei w^{2}+aw+bw-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-4 b=2
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(w^{2}-4w\right)+\left(2w-8\right)
Tuhia anō te w^{2}-2w-8 hei \left(w^{2}-4w\right)+\left(2w-8\right).
w\left(w-4\right)+2\left(w-4\right)
Tauwehea te w i te tuatahi me te 2 i te rōpū tuarua.
\left(w-4\right)\left(w+2\right)
Whakatauwehea atu te kīanga pātahi w-4 mā te whakamahi i te āhuatanga tātai tohatoha.
w=4 w=-2
Hei kimi otinga whārite, me whakaoti te w-4=0 me te w+2=0.
w^{2}-2w+1-3^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(w-1\right)^{2}.
w^{2}-2w+1-9=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
w^{2}-2w-8=0
Tangohia te 9 i te 1, ka -8.
w=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
Pūrua -2.
w=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
Whakareatia -4 ki te -8.
w=\frac{-\left(-2\right)±\sqrt{36}}{2}
Tāpiri 4 ki te 32.
w=\frac{-\left(-2\right)±6}{2}
Tuhia te pūtakerua o te 36.
w=\frac{2±6}{2}
Ko te tauaro o -2 ko 2.
w=\frac{8}{2}
Nā, me whakaoti te whārite w=\frac{2±6}{2} ina he tāpiri te ±. Tāpiri 2 ki te 6.
w=4
Whakawehe 8 ki te 2.
w=-\frac{4}{2}
Nā, me whakaoti te whārite w=\frac{2±6}{2} ina he tango te ±. Tango 6 mai i 2.
w=-2
Whakawehe -4 ki te 2.
w=4 w=-2
Kua oti te whārite te whakatau.
w^{2}-2w+1-3^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(w-1\right)^{2}.
w^{2}-2w+1-9=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
w^{2}-2w-8=0
Tangohia te 9 i te 1, ka -8.
w^{2}-2w=8
Me tāpiri te 8 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
w^{2}-2w+1=8+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-2w+1=9
Tāpiri 8 ki te 1.
\left(w-1\right)^{2}=9
Tauwehea w^{2}-2w+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-1\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-1=3 w-1=-3
Whakarūnātia.
w=4 w=-2
Me tāpiri 1 ki ngā taha e rua o te whārite.