Whakaoti mō v
v=7
v=\frac{1}{5}=0.2
Tohaina
Kua tāruatia ki te papatopenga
v-7=5v^{2}-35v
Whakamahia te āhuatanga tohatoha hei whakarea te 5v ki te v-7.
v-7-5v^{2}=-35v
Tangohia te 5v^{2} mai i ngā taha e rua.
v-7-5v^{2}+35v=0
Me tāpiri te 35v ki ngā taha e rua.
36v-7-5v^{2}=0
Pahekotia te v me 35v, ka 36v.
-5v^{2}+36v-7=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=36 ab=-5\left(-7\right)=35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -5v^{2}+av+bv-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,35 5,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 35.
1+35=36 5+7=12
Tātaihia te tapeke mō ia takirua.
a=35 b=1
Ko te otinga te takirua ka hoatu i te tapeke 36.
\left(-5v^{2}+35v\right)+\left(v-7\right)
Tuhia anō te -5v^{2}+36v-7 hei \left(-5v^{2}+35v\right)+\left(v-7\right).
5v\left(-v+7\right)-\left(-v+7\right)
Tauwehea te 5v i te tuatahi me te -1 i te rōpū tuarua.
\left(-v+7\right)\left(5v-1\right)
Whakatauwehea atu te kīanga pātahi -v+7 mā te whakamahi i te āhuatanga tātai tohatoha.
v=7 v=\frac{1}{5}
Hei kimi otinga whārite, me whakaoti te -v+7=0 me te 5v-1=0.
v-7=5v^{2}-35v
Whakamahia te āhuatanga tohatoha hei whakarea te 5v ki te v-7.
v-7-5v^{2}=-35v
Tangohia te 5v^{2} mai i ngā taha e rua.
v-7-5v^{2}+35v=0
Me tāpiri te 35v ki ngā taha e rua.
36v-7-5v^{2}=0
Pahekotia te v me 35v, ka 36v.
-5v^{2}+36v-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-36±\sqrt{36^{2}-4\left(-5\right)\left(-7\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 36 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-36±\sqrt{1296-4\left(-5\right)\left(-7\right)}}{2\left(-5\right)}
Pūrua 36.
v=\frac{-36±\sqrt{1296+20\left(-7\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
v=\frac{-36±\sqrt{1296-140}}{2\left(-5\right)}
Whakareatia 20 ki te -7.
v=\frac{-36±\sqrt{1156}}{2\left(-5\right)}
Tāpiri 1296 ki te -140.
v=\frac{-36±34}{2\left(-5\right)}
Tuhia te pūtakerua o te 1156.
v=\frac{-36±34}{-10}
Whakareatia 2 ki te -5.
v=-\frac{2}{-10}
Nā, me whakaoti te whārite v=\frac{-36±34}{-10} ina he tāpiri te ±. Tāpiri -36 ki te 34.
v=\frac{1}{5}
Whakahekea te hautanga \frac{-2}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
v=-\frac{70}{-10}
Nā, me whakaoti te whārite v=\frac{-36±34}{-10} ina he tango te ±. Tango 34 mai i -36.
v=7
Whakawehe -70 ki te -10.
v=\frac{1}{5} v=7
Kua oti te whārite te whakatau.
v-7=5v^{2}-35v
Whakamahia te āhuatanga tohatoha hei whakarea te 5v ki te v-7.
v-7-5v^{2}=-35v
Tangohia te 5v^{2} mai i ngā taha e rua.
v-7-5v^{2}+35v=0
Me tāpiri te 35v ki ngā taha e rua.
36v-7-5v^{2}=0
Pahekotia te v me 35v, ka 36v.
36v-5v^{2}=7
Me tāpiri te 7 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-5v^{2}+36v=7
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5v^{2}+36v}{-5}=\frac{7}{-5}
Whakawehea ngā taha e rua ki te -5.
v^{2}+\frac{36}{-5}v=\frac{7}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
v^{2}-\frac{36}{5}v=\frac{7}{-5}
Whakawehe 36 ki te -5.
v^{2}-\frac{36}{5}v=-\frac{7}{5}
Whakawehe 7 ki te -5.
v^{2}-\frac{36}{5}v+\left(-\frac{18}{5}\right)^{2}=-\frac{7}{5}+\left(-\frac{18}{5}\right)^{2}
Whakawehea te -\frac{36}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{18}{5}. Nā, tāpiria te pūrua o te -\frac{18}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-\frac{36}{5}v+\frac{324}{25}=-\frac{7}{5}+\frac{324}{25}
Pūruatia -\frac{18}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
v^{2}-\frac{36}{5}v+\frac{324}{25}=\frac{289}{25}
Tāpiri -\frac{7}{5} ki te \frac{324}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(v-\frac{18}{5}\right)^{2}=\frac{289}{25}
Tauwehea v^{2}-\frac{36}{5}v+\frac{324}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{18}{5}\right)^{2}}=\sqrt{\frac{289}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-\frac{18}{5}=\frac{17}{5} v-\frac{18}{5}=-\frac{17}{5}
Whakarūnātia.
v=7 v=\frac{1}{5}
Me tāpiri \frac{18}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}