Whakaoti mō v
v=-1
v=7
Tohaina
Kua tāruatia ki te papatopenga
v^{2}+8v+16=2v^{2}+2v+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(v+4\right)^{2}.
v^{2}+8v+16-2v^{2}=2v+9
Tangohia te 2v^{2} mai i ngā taha e rua.
-v^{2}+8v+16=2v+9
Pahekotia te v^{2} me -2v^{2}, ka -v^{2}.
-v^{2}+8v+16-2v=9
Tangohia te 2v mai i ngā taha e rua.
-v^{2}+6v+16=9
Pahekotia te 8v me -2v, ka 6v.
-v^{2}+6v+16-9=0
Tangohia te 9 mai i ngā taha e rua.
-v^{2}+6v+7=0
Tangohia te 9 i te 16, ka 7.
a+b=6 ab=-7=-7
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -v^{2}+av+bv+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=7 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-v^{2}+7v\right)+\left(-v+7\right)
Tuhia anō te -v^{2}+6v+7 hei \left(-v^{2}+7v\right)+\left(-v+7\right).
-v\left(v-7\right)-\left(v-7\right)
Tauwehea te -v i te tuatahi me te -1 i te rōpū tuarua.
\left(v-7\right)\left(-v-1\right)
Whakatauwehea atu te kīanga pātahi v-7 mā te whakamahi i te āhuatanga tātai tohatoha.
v=7 v=-1
Hei kimi otinga whārite, me whakaoti te v-7=0 me te -v-1=0.
v^{2}+8v+16=2v^{2}+2v+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(v+4\right)^{2}.
v^{2}+8v+16-2v^{2}=2v+9
Tangohia te 2v^{2} mai i ngā taha e rua.
-v^{2}+8v+16=2v+9
Pahekotia te v^{2} me -2v^{2}, ka -v^{2}.
-v^{2}+8v+16-2v=9
Tangohia te 2v mai i ngā taha e rua.
-v^{2}+6v+16=9
Pahekotia te 8v me -2v, ka 6v.
-v^{2}+6v+16-9=0
Tangohia te 9 mai i ngā taha e rua.
-v^{2}+6v+7=0
Tangohia te 9 i te 16, ka 7.
v=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 7}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 6 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-6±\sqrt{36-4\left(-1\right)\times 7}}{2\left(-1\right)}
Pūrua 6.
v=\frac{-6±\sqrt{36+4\times 7}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
v=\frac{-6±\sqrt{36+28}}{2\left(-1\right)}
Whakareatia 4 ki te 7.
v=\frac{-6±\sqrt{64}}{2\left(-1\right)}
Tāpiri 36 ki te 28.
v=\frac{-6±8}{2\left(-1\right)}
Tuhia te pūtakerua o te 64.
v=\frac{-6±8}{-2}
Whakareatia 2 ki te -1.
v=\frac{2}{-2}
Nā, me whakaoti te whārite v=\frac{-6±8}{-2} ina he tāpiri te ±. Tāpiri -6 ki te 8.
v=-1
Whakawehe 2 ki te -2.
v=-\frac{14}{-2}
Nā, me whakaoti te whārite v=\frac{-6±8}{-2} ina he tango te ±. Tango 8 mai i -6.
v=7
Whakawehe -14 ki te -2.
v=-1 v=7
Kua oti te whārite te whakatau.
v^{2}+8v+16=2v^{2}+2v+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(v+4\right)^{2}.
v^{2}+8v+16-2v^{2}=2v+9
Tangohia te 2v^{2} mai i ngā taha e rua.
-v^{2}+8v+16=2v+9
Pahekotia te v^{2} me -2v^{2}, ka -v^{2}.
-v^{2}+8v+16-2v=9
Tangohia te 2v mai i ngā taha e rua.
-v^{2}+6v+16=9
Pahekotia te 8v me -2v, ka 6v.
-v^{2}+6v=9-16
Tangohia te 16 mai i ngā taha e rua.
-v^{2}+6v=-7
Tangohia te 16 i te 9, ka -7.
\frac{-v^{2}+6v}{-1}=-\frac{7}{-1}
Whakawehea ngā taha e rua ki te -1.
v^{2}+\frac{6}{-1}v=-\frac{7}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
v^{2}-6v=-\frac{7}{-1}
Whakawehe 6 ki te -1.
v^{2}-6v=7
Whakawehe -7 ki te -1.
v^{2}-6v+\left(-3\right)^{2}=7+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-6v+9=7+9
Pūrua -3.
v^{2}-6v+9=16
Tāpiri 7 ki te 9.
\left(v-3\right)^{2}=16
Tauwehea v^{2}-6v+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-3\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-3=4 v-3=-4
Whakarūnātia.
v=7 v=-1
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}