Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-14t+49=\left(t+7\right)^{2}-84
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(t-7\right)^{2}.
t^{2}-14t+49=t^{2}+14t+49-84
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(t+7\right)^{2}.
t^{2}-14t+49=t^{2}+14t-35
Tangohia te 84 i te 49, ka -35.
t^{2}-14t+49-t^{2}=14t-35
Tangohia te t^{2} mai i ngā taha e rua.
-14t+49=14t-35
Pahekotia te t^{2} me -t^{2}, ka 0.
-14t+49-14t=-35
Tangohia te 14t mai i ngā taha e rua.
-28t+49=-35
Pahekotia te -14t me -14t, ka -28t.
-28t=-35-49
Tangohia te 49 mai i ngā taha e rua.
-28t=-84
Tangohia te 49 i te -35, ka -84.
t=\frac{-84}{-28}
Whakawehea ngā taha e rua ki te -28.
t=3
Whakawehea te -84 ki te -28, kia riro ko 3.