Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-8t+16=\left(t+4\right)^{2}+32
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(t-4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+16+32
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(t+4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+48
Tāpirihia te 16 ki te 32, ka 48.
t^{2}-8t+16-t^{2}=8t+48
Tangohia te t^{2} mai i ngā taha e rua.
-8t+16=8t+48
Pahekotia te t^{2} me -t^{2}, ka 0.
-8t+16-8t=48
Tangohia te 8t mai i ngā taha e rua.
-16t+16=48
Pahekotia te -8t me -8t, ka -16t.
-16t=48-16
Tangohia te 16 mai i ngā taha e rua.
-16t=32
Tangohia te 16 i te 48, ka 32.
t=\frac{32}{-16}
Whakawehea ngā taha e rua ki te -16.
t=-2
Whakawehea te 32 ki te -16, kia riro ko -2.