Whakaoti mō t
t=-\frac{3}{16}=-0.1875
Tohaina
Kua tāruatia ki te papatopenga
t^{2}-8t+16=\left(t+4\right)^{2}+3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(t-4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+16+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(t+4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+19
Tāpirihia te 16 ki te 3, ka 19.
t^{2}-8t+16-t^{2}=8t+19
Tangohia te t^{2} mai i ngā taha e rua.
-8t+16=8t+19
Pahekotia te t^{2} me -t^{2}, ka 0.
-8t+16-8t=19
Tangohia te 8t mai i ngā taha e rua.
-16t+16=19
Pahekotia te -8t me -8t, ka -16t.
-16t=19-16
Tangohia te 16 mai i ngā taha e rua.
-16t=3
Tangohia te 16 i te 19, ka 3.
t=\frac{3}{-16}
Whakawehea ngā taha e rua ki te -16.
t=-\frac{3}{16}
Ka taea te hautanga \frac{3}{-16} te tuhi anō ko -\frac{3}{16} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}