Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-8t+16=\left(t+4\right)^{2}+3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(t-4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+16+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(t+4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+19
Tāpirihia te 16 ki te 3, ka 19.
t^{2}-8t+16-t^{2}=8t+19
Tangohia te t^{2} mai i ngā taha e rua.
-8t+16=8t+19
Pahekotia te t^{2} me -t^{2}, ka 0.
-8t+16-8t=19
Tangohia te 8t mai i ngā taha e rua.
-16t+16=19
Pahekotia te -8t me -8t, ka -16t.
-16t=19-16
Tangohia te 16 mai i ngā taha e rua.
-16t=3
Tangohia te 16 i te 19, ka 3.
t=\frac{3}{-16}
Whakawehea ngā taha e rua ki te -16.
t=-\frac{3}{16}
Ka taea te hautanga \frac{3}{-16} te tuhi anō ko -\frac{3}{16} mā te tango i te tohu tōraro.