Aromātai
\frac{44tu}{125}
Whakaroha
\frac{44tu}{125}
Tohaina
Kua tāruatia ki te papatopenga
\frac{t\times \frac{2}{5}\times 2}{2\times 2+1}u\times \frac{2\times 5+1}{5}
Whakawehe t\times \frac{2}{5} ki te \frac{2\times 2+1}{2} mā te whakarea t\times \frac{2}{5} ki te tau huripoki o \frac{2\times 2+1}{2}.
\frac{t\times \frac{2\times 2}{5}}{2\times 2+1}u\times \frac{2\times 5+1}{5}
Tuhia te \frac{2}{5}\times 2 hei hautanga kotahi.
\frac{t\times \frac{4}{5}}{2\times 2+1}u\times \frac{2\times 5+1}{5}
Whakareatia te 2 ki te 2, ka 4.
\frac{t\times \frac{4}{5}}{4+1}u\times \frac{2\times 5+1}{5}
Whakareatia te 2 ki te 2, ka 4.
\frac{t\times \frac{4}{5}}{5}u\times \frac{2\times 5+1}{5}
Tāpirihia te 4 ki te 1, ka 5.
t\times \frac{4}{25}u\times \frac{2\times 5+1}{5}
Whakawehea te t\times \frac{4}{5} ki te 5, kia riro ko t\times \frac{4}{25}.
t\times \frac{4}{25}u\times \frac{10+1}{5}
Whakareatia te 2 ki te 5, ka 10.
t\times \frac{4}{25}u\times \frac{11}{5}
Tāpirihia te 10 ki te 1, ka 11.
t\times \frac{4\times 11}{25\times 5}u
Me whakarea te \frac{4}{25} ki te \frac{11}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t\times \frac{44}{125}u
Mahia ngā whakarea i roto i te hautanga \frac{4\times 11}{25\times 5}.
\frac{t\times \frac{2}{5}\times 2}{2\times 2+1}u\times \frac{2\times 5+1}{5}
Whakawehe t\times \frac{2}{5} ki te \frac{2\times 2+1}{2} mā te whakarea t\times \frac{2}{5} ki te tau huripoki o \frac{2\times 2+1}{2}.
\frac{t\times \frac{2\times 2}{5}}{2\times 2+1}u\times \frac{2\times 5+1}{5}
Tuhia te \frac{2}{5}\times 2 hei hautanga kotahi.
\frac{t\times \frac{4}{5}}{2\times 2+1}u\times \frac{2\times 5+1}{5}
Whakareatia te 2 ki te 2, ka 4.
\frac{t\times \frac{4}{5}}{4+1}u\times \frac{2\times 5+1}{5}
Whakareatia te 2 ki te 2, ka 4.
\frac{t\times \frac{4}{5}}{5}u\times \frac{2\times 5+1}{5}
Tāpirihia te 4 ki te 1, ka 5.
t\times \frac{4}{25}u\times \frac{2\times 5+1}{5}
Whakawehea te t\times \frac{4}{5} ki te 5, kia riro ko t\times \frac{4}{25}.
t\times \frac{4}{25}u\times \frac{10+1}{5}
Whakareatia te 2 ki te 5, ka 10.
t\times \frac{4}{25}u\times \frac{11}{5}
Tāpirihia te 10 ki te 1, ka 11.
t\times \frac{4\times 11}{25\times 5}u
Me whakarea te \frac{4}{25} ki te \frac{11}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t\times \frac{44}{125}u
Mahia ngā whakarea i roto i te hautanga \frac{4\times 11}{25\times 5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}